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Abstract

We propose a unified framework for the certification of
stability and input-output performance of interconnected
dynamical systems. In our approach, we seek local dis-
sipativity certificates for each subsystem such that when
they are combined, the performance of the entire inter-
connected system is certified. We also demonstrate, by
the use of numerical simulations, that the Alternating
Direction Method of Multipliers (ADMM) is a promising
computational approach for solving such problems.

1 Introduction

Many systems of interest naturally occur as an intercon-
nection of a large number of smaller subsystems. Ex-
amples include: power systems, biological networks, au-
tonomous agents, and communication networks. It is
often the case that the individual components are well-
modeled and characterized, but the global interconnected
system is prohibitively difficult to analyze. The reason
for this is that the computational tools used to analyze
and certify the performance of the small subsystems do
not scale well to larger systems. In this paper, we con-
sider a general interconnection of subsystems as depicted
in Figure 1.
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Figure 1: Interconnected system with input and output.

The given subsystems are Gi which map ui 7→ yi, and
M is a static matrix that characterizes the interconnec-
tion topology. Although we think of M as being sparse,
our approach does not rely on this fact and is applicable
for any dense M .

1C. Meissen, L. Lessard, and A. Packard are with the Depart-
ment of Mechanical Engineering at the University of California,
Berkeley, CA 94720, USA.
{cmeissen,lessard,apackard}@berkeley.edu

We consider performance in the dissipativity frame-
work [20]; specifically the case with quadratic supply
rates [21]. The choice of supply rate dictates the property
that is to be verified. For example, we may ask questions
such as: “is the interconnected system stable?”, “is the
L2 gain from d to e less than 2?”, or “is the map from d
to e passive?”. Given a supply rate, the goal is to find an
associated storage function, which may be thought of as
a generalized Lyapunov function. If a storage function
is found, then the property is verified and the storage
function serves as a certificate.

In general, when the Gi are nonlinear systems, de-
termining dissipativity is very difficult. In the case of
linear, time-invariant systems, the problem can be for-
mulated as a linear matrix inequality and can be solved
reliably [21]. For nonlinear, time-invariant systems with
polynomial dynamics, a sum-of-squares relaxation can be
used [17, 19]. The computational complexity of this latter
approach grows dramatically with both the state dimen-
sion and the order of the polynomial certificates.

Main contributions. This paper has two main contri-
butions. The first is to pose the dissipativity-verification
question as a distributed optimization problem. Roughly,
we search over arbitrary dissipativity properties satis-
fied by the local subsystems in such a way that the de-
sired dissipativity property for the interconnected system
emerges. This scalable formulation both generalizes re-
cent efforts to characterize the performance of intercon-
nected systems, and paves the way for further general-
izations to more complicated performance criteria.

Our second contribution is to argue that ADMM, a
popular large-scale optimization algorithm [6], is a poten-
tially viable approach for solving our proposed formula-
tion. We support our claim with numerical evidence, by
solving randomly generated interconnections of 50 linear
systems and comparing various optimization algorithms.

The paper is organized as follows. We first review rel-
evant prior work and required preliminaries in Section 2.
In Section 3, we formulate the distributed optimization
problem, in Section 4 we discuss various decomposition
methods including ADMM, and in Section 5 we present
the results of our numerical simulations. We conclude in
Section 6 with a discussion of possible generalizations.



Prior work. Compositional analysis of large-scale in-
terconnected dynamical systems has been studied ex-
tensively. The conventional approach, as presented
in [2, 3, 14, 20] and others is to fix supply rates and
storage functions for each of the local subsystems. Then,
a candidate for a global storage function is sought as a
linear combination of the local storage functions. The
method presented in this paper is far less conservative in
that we also optimize over arbitrary local storage func-
tions and supply rates. Thus, global performance may
be certified via local certificates that have been automat-
ically generated.

The idea of optimizing over the local supply rates
and storage functions was first introduced in [18]. The
present work generalizes the work in [18] in two major
ways. First, we consider dissipativity with respect to a
quadratic supply rate rather than only considering stabil-
ity certification. Second, we again consider dissipativity
with respect to a general quadratic supply rate for the
local subsystems, whereas in [18] the supply rates were
constrained to be diagonally-scaled induced L2-norms.

While we assume the system has a natural decomposi-
tion into simpler subsystems, this may not always be the
case. Recent works have explored the idea of automati-
cally finding favorable decompositions for such problems.
In [1, 2], a decomposition algorithm based on dissipa-
tion inequalities was proposed. Another approach is a
Hankel-norm based lumping technique [13]. These ap-
proaches may be used to partition a large-scale system
into the canonical form of Figure 1.

2 Preliminaries

Dissipativity theory. See [20] for a more in-depth re-
view of this topic. Consider a time-invariant, continuous-
time dynamical system described by

ẋ(t) = f(x(t), u(t)), f(0, 0) = 0

y(t) = h(x(t), u(t)), h(0, 0) = 0
(1)

with x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp. A supply rate
is a function w : Rm×Rp → R. A system of the form (1)
is said to be dissipative with respect to a supply rate w
if there exists a differentiable and nonnegative function
V : Rn → R+ such that

∇V (x)Tf(x, u)− w(u, y) ≤ 0 (2)

for all x ∈ Rn, u ∈ Rm, and y = h(x, u). Equation (2) is
referred to as the Dissipation Inequality Equation (DIE)
and V as a storage function. For a given supply rate, the
storage function is generally not unique if it exists.

In the special case where the system is autonomous
and the supply rate w is equal to zero, if V is positive
definite then (2) certifies stability of the system and V is
referred to as a Lyapunov function.

If f and h are linear and the supply rate w is a
quadratic function, then the system is dissipative if and
only if there exists a quadratic storage function V . This
problem can then be cast as a linear matrix inequality
(LMI). If f and h have polynomial dynamics and the stor-
age function V is restricted to be a polynomial function
of fixed order then the problem of certifying dissipativity
can be relaxed to a sum-of-squares (SOS) program.

A key idea is that finding a storage function V is dif-
ficult. Much like searching for Lyapunov functions, one
must often broaden the search to very complicated classes
of functions before a suitable one is found.

Interconnected systems. Consider Figure 1. The
system consists of N known subsystems, Gi, with a
known, static interconnection M ∈ Rm×p. Therefore,[

u
e

]
= M

[
y
d

]
(3)

Each Gi has dynamics of the form (1) and is character-
ized by a local state xi and output functions fi and gi,
respectively. We assume that the interconnected system
is well-posed, meaning that for any d ∈ L2e, and any
initial condition x0 there exists unique e, u, y ∈ L2e that
causally depend on d.

We would like to know whether the interconnected
system is dissipative with respect to some given supply
rate w0. Our approach is twofold.

1. For each i, find a local supply rate wi such that Gi
is dissipative with respect to wi. This means that
there exists some storage function Vi such that

∇Vi(xi)Tfi(xi, ui)− wi(ui, yi) ≤ 0 (4)

holds for all xi and ui, with yi = hi(xi, ui).

2. Check whether the interconnected system is dissipa-
tive with respect to w0 with storage function that
is the sum of the local storage functions. So if we
define V (x) =

∑N
i=1 Vi(xi), then

∇V (x)Tf(x, u)− w0(d, e) ≤ 0 (5)

holds for all x and d, with y = h(x, u) and (3).

In our approach, (4)–(5) are combined to eliminate the
storage functions Vi, as we will see in Section 3. There-
fore, verifying step 2 is carried out without explicit
knowledge of the Vi. This may be useful in cases where a
local subsystem is known to be dissipative with respect
to some wi but no Vi has been computed.

3 Problem statement

As mentioned in Section 2, our aim is to certify the per-
formance of the local subsystems in such a way that the



performance of the interconnected system is also certi-
fied. From now on, we will assume that all supply rates
are quadratic. In particular,

w0(d, e) =

[
d
e

]T
W

[
d
e

]
is given, and

wi(ui, yi) =

[
ui
yi

]T
Xi

[
ui
yi

]
for all i

(6)

where W and all Xi are real symmetric matrices. We are
aiming to solve a feasibility problem of the form

minimize
X1:N ,V1:N

0

subject to (Vi, Xi) ∈ Li for i = 1, . . . , N

(X1, . . . , XN ) ∈ G

(7)

Each Li constraint is local because it involves only the
local supply rate Xi and storage function Vi. The G con-
straint is global because it involves all the supply rates.

Before we define the Li and G sets, first introduce the
following conformal block partitions

W =

[
W11 W12

W21 W22

]
, Xi =

[
X11
i X12

i

X21
i X22

i

]
and the following block-diagonal matrices

Xjk =

Xjk
1

. . .
Xjk
N

 for all j, k ∈ {1, 2}

Recall that W is given while X1, . . . , XN are to be found.
The local and global sets are defined as follows.

Li :=
{
Xi, Vi

∣∣∣Vi is differentiable, Vi(xi) ≥ 0,

∇Vi(xi)Tfi(xi, ui)−
[
ui
yi

]T
Xi

[
ui
yi

]
≤ 0

for all xi, ui and with yi = hi(xi, ui)
}

(8)

G :=

{
X1:N

∣∣∣∣∣
N∑
i=1

HiXiH
T
i −H0WHT

0 � 0

}
(9)

Here, the constant matrices H0, . . . ,HN are defined such
that the following identity holds.

N∑
i=1

HiXiH
T
i −H0WHT

0 =

[
M
I

]T 
X11 0 X12 0

0 −W22 0 −W21

X21 0 X22 0
0 −W12 0 −W11

[MI
]

(10)

The local sets Li clearly certify the performance of the
local subsystems. That is, each subsystem Gi is dissi-
pative with respect to wi if and only if (Xi, Vi) ∈ Li.
The following result proves that any solution to (7) is a
performance certificate for the interconnected system.

Proposition 1. Consider the interconnected system de-
scribed in Section 2, with supply rates are of the form (6).
Further suppose that X1, . . . , XN and V1, . . . , VN are a
solution to (7). Then the interconnected system is dissi-
pative with respect to the supply rate w0.

Proof. Multiplying the right-hand side of (10) on the

left and right by
[
yT dT

]
and

[
yT dT

]T
respectively

and making use of (3) and the definition (9), we obtain
u
e
y
d


T 

X11 0 X12 0
0 −W22 0 −W21

X21 0 X22 0
0 −W12 0 −W11



u
e
y
d

 ≤ 0 (11)

Using this and the block diagonal structure of the Xjk,
we can rewrite (11) as the following linear combination
of quadratic forms.

N∑
i=1

[
ui
yi

]T
Xi

[
ui
yi

]
−
[
d
e

]T
W

[
d
e

]
≤ 0 (12)

Adding to (12) each of the local dissipativity inequalities
in (8), we obtain

N∑
i=1

∇Vi(xi)Tfi(xi, ui)−
[
d
e

]T
W

[
d
e

]
≤ 0

Hence, the interconnected system is dissipative with re-
spect to the given supply rate w0.

The benefit of our formulation (7) is that verifying fea-
sibility of a candidate point may be carried out in an
efficient manner. The potentially complicated storage
functions Vi only appear in the local constraints, so they
can be checked separately and in parallel. Finally, mem-
bership of the G set amounts to solving a global LMI.
While this constraint does not decouple, it also does not
depend on the storage functions.

In the next section, we will describe several different
ways in which one may take advantage of the struc-
ture of (7) to decompose the optimization problem and
thereby solve it efficiently.

4 Decomposition techniques

There are many ways to efficiently compute solutions
to (7). The basic idea is that the constraints involving
the Vi are independent, so one should take advantage of
this fact in choosing a computational approach. As men-
tioned in Section 2, it is particularly important to take
advantage of separability because the local storage func-
tions Vi may need to be very complicated, and searching
for a global storage function of adequate complexity may
be computationally infeasible.



Projected Subgradient method. Dual decomposi-
tion and the projected subgradient method as presented
in [7] was used in [18] to certify stability of an intercon-
nected system and in [15] to verify the safety of a system
using barrier certificates. Applying dual decomposition
to (7), the projected subgradient method has the form:

1. Local optimization: given Λk, solve for each i:

(Xk+1
i , V k+1

i ) =

arg min
(X,V )∈Li

trace
(
ΛkHiXH

T
i

)
+ ρ‖X‖2F

where ρ is a regularization parameter.

2. If (Xk+1
1:N , V k+1

1:N ) is not feasible, update Λk as follows
and return to step 1.

Λk+1 = P

(
Λk + αk

( N∑
i=1

HiX
k+1
i HT

i −H0WHT
0

))

where P projects onto the positive-semidefinite cone,
and {αk} is the stepsize sequence.

If the stepsize sequence {αk} satisfies αk > 0, αk → 0+,
and

∑
k αk = ∞, the subgradient method is guaranteed

to converge to a solution, either after finitely many steps
or in the limit. However, careful tuning of the stepsize
schedule and regularization parameter is often required
to achieve desirable performance [5].

Projection methods. A natural way of viewing (7)
is that we are seeking to find a point that lies in the
intersection of several sets. Note that G is a convex set. If
all the Li sets are convex as well, we may use projection
methods. The simplest such method is the alternating
projection method [9], which has the form:

1. For each i, project onto the local sets.

(X
k+1/2
i , V k+1

i ) = arg min
(X,V )∈Li

∥∥X −Xk
i

∥∥2
F

2. project onto the global set.

Xk+1
1:N = arg min

X1:N∈G

N∑
i=1

∥∥Xi −Xk+1/2
i

∥∥2
F

3. If (Xk+1
1:N , V k+1

1:N ) is not feasible return to step 1.

We tested this method as well as Dykstra’s method [4],
another popular projection method. These methods are
guaranteed to converge monotonically, though the con-
vergence rates may be very slow.

ADMM. The Alternating Direction Method of Multi-
pliers (ADMM) is a kind of operator-splitting method,
and is described in detail in [6]. This method has been
shown to perform well in many practical engineering ap-
plications [6, 11, 12]. It can be used to solve problems of
the form

minimize f(x) + g(z)

subject to Ax+Bz = c
(13)

where x and z are vector decision variables. Our prob-
lem (7) may be put into this form by defining the follow-
ing indicator functions:

ILi
(Xi, Vi) :=

{
0 (Xi, Vi) ∈ Li
∞ otherwise

IG(X1:N ) :=

{
0 (X1, . . . , XN ) ∈ G
∞ otherwise

We may then write (7) as

minimize
X1:N ,Z1:N ,V1:N

N∑
i=1

ILi(Xi, Vi) + IG(Z1, . . . , ZN )

subject to Xi − Zi = 0 for i = 1, . . . , N

and it is now in the canonical form (13). The f function
and the constraints are separable, so the ADMM update
takes on the following parallelized form [6].

1. X-updates: for each i, solve the local problem

(Xk+1
i , V k+1

i ) = arg min
(X,V )∈Li

∥∥X − Zki + Uki
∥∥2
F

2. Z-update: if (Xk+1
1:N , V k+1

1:N ) is not feasible, solve the
global problem

Zk+1
1:N = arg min

Z1:N∈G

∥∥∥∥∥
N∑
i=1

(Xk+1
i − Zi + Uki )

∥∥∥∥∥
2

F

3. U -update: perform the following update and return
to step 1.

Uk+1
i = Xk+1

i − Zk+1 + Uki

When applied to (13), ADMM is guaranteed to converge
if f , g are closed, proper, and convex, and the Lagrangian
has a saddle point [6].

5 Numerical simulations

In order to test and compare the different algorithms
discussed in Section 4, we randomly generated N = 50
stable LTI subsystems, each with 3 states, 2 inputs, and 2
outputs. The subsystem state-space equations (1) then
take the form

Gi :
ẋi = Aixi +Biui

yi = Cixi +Diui
for i = 1, . . . , N



Each Gi was scaled so that its L2 gain (equivalently,
its H∞ norm, or induced L2 norm) was equal to 0.95.
A random sparse interconnection matrix M was gener-
ated with 5% of its entries nonzero and scaled so that
its spectral norm satisfies ‖M‖ = 0.95. The intercon-
nected system has two inputs and two outputs. Due to
the scalings mentioned above, the interconnected system
will be stable and have L2 gain less than 1. We then in-
troduced further random scalings Ψ = diag(Ψ1, . . . ,ΨN )
and Φ = diag(Φ1, . . . ,ΦN ), and transformed the inter-
connection of Figure 1 into that of Figure 2. These final
scalings do not change the closed-loop map from d to e,
but they conceal the fact that the interconnection was
constructed to satisfy a particular L2 gain condition.

[
Ψ−1 0

0 I2

]
M

[
Φ−1 0

0 I2

]

Φ1G1Ψ1
. . .

ΦNGNΨN
y

d

u

e

Figure 2: Scaling of the interconnected system of Figure 1
that leaves the closed-loop map unchanged.

As a proof-of-concept, we restricted our search to
quadratic Vi functions. Therefore, the Li sets (8) are

Li :=

{
Xi, Pi

∣∣∣∣∣Pi � 0,

[
AT
i Pi + PiAi PiBi
BT
i Pi 0

]

−
[

0 I
Ci Di

]T
Xi

[
0 I
Ci Di

]
� 0

}

Certifying that the L2 gain of the interconnected system
is less than 1 amounts to using the supply rate

w0(d, e) = ‖d‖22 − ‖e‖22 =

[
d
e

]T [
I 0
0 −I

] [
d
e

]
Figure 3 shows a typical convergence plot comparing

the various methods discussed in Section 4. Each method
was implemented in MATLAB using the CVX toolbox [8]
to solve all the convex optimization problems. For each
method, we plot the largest eigenvalue of the G-constraint
as a function of iteration count. When this value be-
comes negative, all eigenvalues are negative and the G-
constraint is satisfied; a feasible point has been found.
The iterative methods were initialized using Λ0 = I and
X0
i = Z0

i = −I, as applicable.

We now make a few remarks regarding these result.
For the particular example plotted in Figure 3, the
ADMM method converges in 15 iterations. The trace
ends abruptly when the subsequent point is negative and
feasibility has been attained.

100 101 102 103

10−5

10−4

10−3

10−2

10−1

100

Iterations

Subgradient, αk = (100 + k)−1 Dykstra’s proj.

Subgradient, αk = (50 + k)−1 Alternating proj.

ADMM

Figure 3: Plot of the largest eigenvalue for five differ-
ent iterative methods. Feasibility is achieved when all
eigenvalues are negative (indicated by a terminal circle).
ADMM converged in 15 iterations, while the other meth-
ods took longer or failed to converge after 1000 iterations.

Similar traces are obtained for the projected sub-
gradient method, though the number of iterations re-
quired to find a feasible point turned out to be very
sensitive to initial conditions, stepsize schedule {αk},
and regularization parameter ρ. With a stepsize of
αk = (100 + k)−1, a feasible point was found in 187 it-
erations, but when the stepsizes are increased slightly to
αk = (50 + k)−1, no feasible point was found after 1000
iterations. We used ρ = 0.1 for both cases.

Finally, Dykstra’s method and the alternating projec-
tion method both exhibited a monotonically decreasing
behavior typical of projection methods; they steadily ap-
proached the boundary of the feasible set without ever
penetrating it.

Note that in Figure 3, the x-axis measures iterations
rather than time or floating-point operations. Iteration
count is a fair metric in this case, because all methods
compared have a similar structure. Specifically, each iter-
ation consists of parallelizable local steps involving the Li
constraints, and a global step involving the G constraint.
There is a minor difference in the global step, however.
The subgradient method computes a global projection
onto the positive-semidefinite cone, while the other meth-
ods compute a projection onto G, which is described by
a global LMI. One could argue that the latter requires
more computational effort than the former.



In order to test the robustness of ADMM, we gener-
ated 1000 random instances of the interconnected system
described earlier in this section. All parameters including
the interconnection topology were randomized. ADMM
was applied to each system, and the number of iterations
required to certify L2 performance were recorded. Fig-
ure 4 shows a cumulative frequency plot of the result.
Only one of the 1000 systems tested required more than
40 iterations (it required 74 iterations), and 90% of sys-
tems tested required 16 iterations or fewer.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

40+

Iterations to convergence

Figure 4: Cumulative plot showing the fraction of 1000
total trials that required at most a given number of itera-
tions to find a feasible point using ADMM. For example,
the fastest trials found a feasible point in 4 iterations.
Also, 90% of trials succeeded in 16 iterations or fewer.

These results suggest that ADMM, even in its most
basic implementation, is a fast and reliable way of solv-
ing large distributed performance certification problems,
both in an absolute sense, and as compared to sub-
gradient or projection methods.

6 Extensions and future directions

Several extensions are possible, and are likely necessary
to render the method useful for it’s intended purpose of
certifying performance of large interconnections of non-
linear systems. We discuss two possibilities below.

Polynomials and SOS. In Section 5, we assumed
the Vi were quadratic. This may not be adequate for
certifying the dissipativity of a general nonlinear sys-
tem, as in equation (4)–(5). A sufficient condition, suit-
able for the case when f, h are polynomials and V is
drawn from a finite-dimensional subspace of polynomial
functions, is to require that the expressions V (x) and

w(u, h(x, u))−∇V Tf(x, u) are sum-of-squares in the vari-
ables x and (x, u) respectively. Deciding if such a V exists
can be determined by a semidefinite program.

Extension to IQCs. Rather than requiring dissipa-
tivity with respect to a quadratic supply rate, we may
want to allow for integral quadratic constraints (IQCs).
This allows for very general frequency-dependent per-
formance measures, including robustness analysis [10].
As in the dissipativity framework, the conventional ap-
proach of fixing the local storage functions was adapted
to IQCs in [16]. We now outline how the approach of
Sections 3 and 4 may also be extended to IQCs.

If (Ā, B̄, C̄, D̄) is the realization of a stable LTI sys-
tem Ψ, then the existence of a positive semidefinite
V (x, η) such that

(∇xV )Tf(x, u) + (∇ηV )T
(
Āη + B̄

[
u
y

])
≤
(
C̄η + D̄

[
u
y

])T

X

(
C̄η + D̄

[
u
y

])
(14)

for all x, u, and y = h(x, u) ensures that the dynamical
system ẋ = f(x, u), y = h(x, u) satisfies the IQC defined
by Π = Ψ∗XΨ. We recover traditional dissipativity in
the special case where Ψ is static.

Using such IQCs for each subsystem, the global certi-
fying condition (9) takes on the form

[
M
I

]T 
Π11 0 Π12 0
0 −W22 0 −W21

Π21 0 Π22 0
0 −W12 0 −W11

[MI
]
� −εI

where the Πjk and Wjk are functions of frequency ω,
and the inequality must hold for all ω ∈ R. Such a
constraint can be made tractable by sampling at finitely
many points, or via the KYP lemma.

While these extensions affect the sets (4)–(5), the op-
timization problem (7) has the same structural form.
Hence, the ADMM algorithm as described in Section 4
can be applied, and is the subject of future work.
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