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Abstract

Compositional Stability, Performance, and Safety Certification of Interconnected Systems

by

Christopher Ryan Meissen

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Andrew Packard, Chair

Modern computational tools for stability, performance, and safety certification are not
scalable to large nonlinear systems. In this dissertation we propose a compositional analysis
approach that takes advantage of the interconnected structure of many modern large-scale
systems to solve this problem. Specifically, we pose the certification problem as a distributed
optimization that searches over the input-output properties of each subsystem to certify a
desired property of the interconnected system. The alternating direction method of mul-
tipliers (ADMM), a popular distributed optimization technique, is employed to decompose
and solve this problem.

This approach is very general in that it allows us to search over a wide range of input-
output properties for each subsystem. We demonstrate the use of dissipativity, equilibrium
independent dissipativity (EID), and integral quadratic constraints (IQCs) to characterize
the properties of the individual subsystems and the entire interconnection. Multiple examples
showing the applicability and scalability of the approach are presented.

Furthermore, we demonstrate how symmetries in the interconnection topology can be
exploited to further improve the computational efficiency and scalability of the distributed
optimization problem. Unlike other symmetry reduction techniques this approach does not
require the subsystems to be identical, but only to share input-output properties. Thus, it
can be applied to many real world systems. We demonstrate these reduction techniques on
a large-scale nonlinear example and a vehicle platoon example.

Finally, we present a passivity-based formation control strategy for multiple unmanned
aerial vehicles (UAVs) cooperatively carrying a suspended load. This strategy is designed
such that the input-output properties of the individual UAVs and the interconnection struc-
ture guarantee stability of the system under appropriate conditions. Specifically, we show
that the system is stable for any configurations where the cables carrying the suspended load
are in tension.
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Chapter 1

Introduction

In this dissertation we describe a compositional approach to stability, performance, and
safety certification that takes advantage of the interconnected structure of many modern
large-scale systems. This research is motivated by the fact that modern computational
tools are not scalable to large-scale nonlinear systems and many modern systems like robot
swarms, power systems, or biological networks have a natural structure that consists of many
small interconnected subsystems. Therefore, we consider interconnected systems as shown
in Figure 1.1 where the Σi blocks are known subsystems mapping ui 7→ yi and M is a static
matrix that characterizes the interconnection topology.

The goal of compositional analysis is to establish properties of the interconnected system
using only properties of the subsystems and their interconnection. Henceforth, the term
local is used to refer to properties or analysis of individual subsystems in isolation. Likewise,
global refers to the entire interconnected system.

M

Σ1
. . .

ΣN
y

d

u

e

Figure 1.1: Interconnected system with input d and output e.

We formulate the certification problem as a feasibility problem with local constraints that
guarantee certain input-output properties of each subsystem and a global constraint that de-
pends on the input-output properties of all the subsystems and the interconnection structure.
The alternating direction method of multipliers (ADMM) [1], a popular distributed optimiza-
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tion technique, is employed to decompose and solve this problem. The ADMM algorithm
iteratively searches over the local input-output properties of each subsystem to certify the
desired global properties of the interconnected system.

Local input-output properties and global performance are cast and quantified in the
framework of dissipative systems [2], [3]; specifically the case with quadratic supply rates.
The global supply rate is specified by the analyst and dictates the system performance that
is to be verified. For example, supply rates can be chosen to characterize L2-gain, passivity,
output-strict passivity, etc., for the input-output pair (d,e). A storage function is then
sought to certify dissipativity with respect to the desired supply rate. We demonstrate how
this framework can also be extended to the more general case when the subsystems are
equilibrium independent dissipative (EID) or satisfy integral quadratic constraints (IQCs).
Furthermore, we show this framework can be easily modified to also certify safety of the
interconnected system under finite energy disturbances.

A conventional approach to compositional analysis, as presented for example in [2]–[7],
is to establish individual supply rates (and storage functions) for which each subsystem is
dissipative. Then, a storage function certifying dissipativity of the interconnected system is
sought as a conic combination of the subsystem storage functions.

The method presented here also searches for a conic combination of subsystem storage
functions that certify properties of the interconnected system, but it is less conservative
because the local supply rates (and storage functions) are optimized with regards to their
particular suitability in certifying global properties. Thus, the local certificates are automat-
ically generated, as opposed to being preselected.

The ADMM algorithm decomposes the certification into parallelizable, local problems
for each subsystem and a global problem. The overall problem is then solved by iteratively
solving the local and global subproblems in a coordinated fashion until they converge to
a solution certifying the desired global properties. At every iteration each local problem
receives a proposed supply rate from the global problem and solves an optimization problem
certifying dissipativity of the corresponding subsystem with a supply rate close to the pro-
posed one. The global problem, with knowledge of the interconnection M and the updated
supply rates, solves an optimization problem to certify dissipativity of the interconnected
system and proposes new supply rates.

In order to further improve the computational efficiency and scalability of this problem
we also take advantage of symmetries in the interconnection. These symmetries, defined by
invariance under specific row and column permutations of the interconnection matrix M , can
be exploited to further improve the computational efficiency and scalability of the distributed
optimization algorithm. Unlike other symmetry reduction techniques this approach does not
require the subsystems to be identical, but only to share input-output properties. Thus, it
can be applied to many real world systems.

Finally, a passivity-based formation control strategy for multiple unmanned aerial ve-
hicles (UAVs) cooperatively carrying a suspended load is presented. This application does
not explicitly use the compositional analysis framework, but it has many similarities. The
strategy uses the input-output properties of the individual UAVs and the interconnection
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structure to find a storage function guaranteeing stability of the system under appropriate
conditions. Specifically, we prove the system is stable for any configurations where the cables
carrying the suspended load are in tension.

The content and contributions of each chapter are briefly described below.
Chapter 2 presents a summary of background material that will be used throughout

this work. First, the primary system analysis tools that will be used are described. This
includes the concepts of dissipativity, equilibrium independent dissipativity (EID), and in-
tegral quadratic constraints (IQCs). We describe how for linear systems these properties
can be verified via semidefinite programming and for nonlinear polynomial systems they
can be verified using sum-of-squares (SOS) programming. We also briefly discuss how SOS
problems are transformed into SDPs. Finally, we discuss the computational complexity of
solving SDPs using standard primal-dual interior point algorithms.

Chapter 3 describes a compositional framework for certifying stability or performance
of an interconnected system. This is posed as a feasibility problem with local constraints
that require each subsystem to be dissipative and a global constraint that involves all the
subsystem properties and the interconnection structure. We also prove that for linear systems
this approach is equivalent to searching for a separable storage function.

We extend this compositional framework to interconnections of subsystems that are EID
or satisfy IQCs. This also allows us to certify properties of the interconnected system that are
described by EID or IQCs. Finally, we present an extension of this framework to certify safety
of the interconnected system under finite energy disturbances. Similar to the performance
certification this is applicable for subsystems that are dissipative, EID, or satisfy IQCs. The
material in this chapter is expanded on from [8], [9].

Chapter 4 formulates the compositional certification problems presented in Chapter 3
as an optimization problem. Using distributed optimization techniques, specifically the al-
ternating direction method of multipliers (ADMM), this problem is decomposed into several
smaller subproblems that can be solved iteratively. The subproblems consist of N local
problems that only involve an individual subsystem and one global problem that depends
on the interconnection structure and the properties of the subsystems determined from the
local problems. Convergence guarantees of the ADMM algorithm for the performance certi-
fication problem are described and a relaxed exit criterion for the algorithm is presented. We
demonstrate the ADMM algorithm on a simple example with linear subsystems and compare
its performance to other distributed optimization techniques. The material in this chapter
is expanded on from [8]–[10].

Chapter 5 presents multiple examples using the ADMM algorithm to certify properties
of large interconnected systems. The first example demonstrates the algorithms ability to
reliably certify stability for a large-scale linear problem. The second example demonstrates
the benefits of characterizing the subsystem properties with IQCs. The next example cer-
tifies the performance of a large interconnection of nonlinear systems. In this example we
demonstrate that the compositional framework with the ADMM algorithm significantly im-
proves the computational efficiency and scalability of the performance certification compared
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to traditional methods. The final example certifies EID and safety properties of a vehicle
platoon model. The material in this chapter is expanded on from [8], [9].

Chapter 6 exploits symmetries in the interconnection structure to reduce the number of
decision variables and, in some cases, the dimension of the performance certification problem.
First, this is presented for interconnections of dissipative and EID subsystems; then extended
to the case where the subsystems satisfy IQCs. The reduction methods are demonstrated on
the vehicle platoon example presented in Chapter (5) and on a large cyclic interconnection
of nonlinear subsystems. The material in this chapter is reported in [9], [11].

Chapter 7 presents a passivity-based control design for multiple UAVs carrying a sus-
pended load. The proposed control strategy regulates the relative position between the UAVs
and compensates for the vertical force applied by the suspended load. We prove that the
equilibrium points of the system when the cables are in tension are stable and provide sim-
ulation results demonstrating the performance of the control strategy. The material in this
chapter is reported in [12].
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Chapter 2

Properties of Dynamical Systems

In this chapter we introduce the main analysis tools that will be used throughout this
dissertation to characterize the properties of dynamical systems. First, we introduce the
concept of dissipativity and demonstrate how it can be used to characterize commonly used
input-output properties of dynamical systems. Generalizations of dissipativity, including
equilibrium independent dissipativity (EID) and integral quadratic constraints (IQCs), are
then introduced.

We also describe how these properties can be numerically certified using using sum-of-
squares (SOS) and semidefinite programming (SDP). Then, we show how SOS programs
can be converted to SDPs and describe the number of decision variables and dimension of
the resulting SDP. Finally, we briefly discuss the computational complexity of solving SDPs
using standard primal-dual interior point methods.

2.1 Notation
For a vector w ∈ Rn we denote the Euclidean norm as |w|. The L2 norm of a signal
v : [0,∞) → Rn is

∥v∥ :=

(∫ ∞

0

|v(t)|2dt
) 1

2

and v ∈ L2 if ∥v∥ <∞. The extended L2 space is defined as

L2e :=

{
v : [0,∞) → Rn

∣∣∣∣∣
(∫ T

0

|v(t)|2dt
) 1

2

<∞ for all T ∈ [0,∞)

}
.

This is the space of all signals that are square integrable over finite intervals. Therefore, L2

is a subset of L2e.
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2.2 Dissipativity
Dissipativity introduced by Willems [2], [3] allows us to characterize the input-output prop-
erties of dynamical systems. By the choice of a scalar-valued function called the supply rate
different properties of the system can be characterized. For example dissipativity can certify
many commonly used properties such as passivity or finite L2 gain.

Definition 1. Consider a time-invariant dynamical system
ẋ(t) = f(x(t), u(t)), f(0, 0) = 0

y(t) = h(x(t), u(t)), h(0, 0) = 0
(2.1)

with x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp.
A system of the form (2.1) is dissipative with respect to the supply rate w : Rm×Rp → R

if there exists a nonnegative function V : Rn → R+ such that V (0) = 0 and

V (x(τ))− V (x(0)) ≤
∫ τ

0

w(u(t), h(x(t), u(t)))dt (2.2)

for all initial conditions x(0) ∈ Rn, all input signals u : [0, τ ] → Rm, and all τ ≥ 0 in the
interval of existence of the solution x(t). Equation (2.2) is referred to as the dissipation
inequality (DIE) and V as a storage function.

Clearly, dissipativity is a generalization of Lyapunov stability. Specifically, if V is positive
definite and the supply rate satisfies

w(0, 0) = 0 and w(0, y) ≤ 0 for all y ∈ Rp (2.3)

then (2.2) implies the origin of the system is Lyapunov stable. Furthermore, if V is radially
unbounded, that is V (x) → ∞ as |x| → ∞, then the interconnected system is globally stable.

The choice of the supply rate dictates the property that the system satisfies. Some
commonly used properties and the corresponding supply rates are described below.

• Finite L2 gain: w(u, y) = γ2|u|2 − |y|2 γ > 0

Substituting this supply rate into (2.2) with x(0) = 0 gives

V (x(τ)) ≤ γ2
∫ τ

0

|u(t)|2dt−
∫ τ

0

|y(t)|2dt

for all u and τ ≥ 0 which implies the L2 norm of y is less than or equal to γ∥u∥.
Therefore, we refer to γ as an L2 gain for the system.

• Passivity: w(u, y) = u⊤y

This supply rate substituted into (2.2) with x(0) = 0 implies∫ τ

0

u(t)⊤y(t)dt ≥ 0

for all u and τ ≥ 0.
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• Output Strict Passivity: w(u, y) = u⊤y − ϵ|y|2 ϵ > 0

This supply rate strengthens the passivity supply rate since (2.2) with x(0) = 0 implies∫ τ

0

u(t)⊤y(t)dt ≥ ϵ

∫ τ

0

|y(t)|2.

for all u and τ ≥ 0. It can also be shown that this supply rate implies the system has
an L2 gain of 1/ϵ.

• L2 Reachability: w(u, y) = ∥u∥2

This supply rate substituted into (2.2) with x(0) = 0 implies

V (x(τ)) ≤
∫ τ

0

|u(t)|2dt

for all u and τ ≥ 0. Assuming that ∥u∥22 ≤ β this implies that all possible state
trajectories are contained in the sublevel set

Vβ := {x | V (x) ≤ β}.

2.3 Numerical Certification of Dissipativity
In general, certifying that (2.2) holds for all possible initial conditions x(0) and input signals
u is very difficult. However, if the storage function V is differentiable then (2.2) is equivalent
to the algebraic inequality

∇V (x)⊤f(x, u)− w(u, h(x, u)) ≤ 0. (2.4)

holding for all x ∈ Rn and u ∈ Rm [2]. Therefore, we can certify dissipativity by searching
for a differentiable storage function V such that V (x) ≥ 0, V (0) = 0, and (2.4) is satisfied
for all x ∈ Rn and u ∈ Rm.

A linear system (i.e. f and h are linear in u and x) is dissipative with respect to
a quadratic supply rate if and only if there exists a quadratic storage function satisfy-
ing (2.4) [3]. Therefore, certifying dissipativity of a linear system can be cast as a linear
matrix inequality (LMI) and solved via standard SDP solvers. This is demonstrated in the
following example.

Example 2. Consider the linear system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
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with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, and the quadratic supply rate

w(u, y) =

[
u
y

]⊤
X

[
u
y

]
(2.5)

where X ∈ R(m+p)×(m+p) is a symmetric matrix characterizing the supply rate. We as-
sume without loss of generality the storage function is a quadratic function of the form
V (x) = x⊤Px where P ∈ Rn×n is a symmetric positive semidefinite matrix. Substituting
the dynamics, supply rate, and storage function into (2.4) gives

1

2
(Ax+Bu)⊤Px+

1

2
x⊤P (Ax+Bu)−

[
u

Cx+Du

]⊤
X

[
u

Cx+Du

]
≤ 0

for all x ∈ Rn and u ∈ Rm. Therefore, if there exists a symmetric P ≽ 0 such that

1

2

[
A⊤P + PA PB

B⊤P 0

]
−
[
0 I
C D

]⊤
X

[
0 I
C D

]
≼ 0

then the system is dissipative with respect to the supply rate in (2.5).

When the system dynamics and supply rates are more general polynomials, it is not pos-
sible to directly formulate (2.4) as an LMI constraint. However, we can relax the dissipativity
certification problem to a SOS program which can be converted to an SDP. SOS program-
ming is reviewed in Section 2.6 and a brief discussion of the computational complexity of
SDP solvers is given in Section 2.7.

Let R[x] be the set of polynomials in the indeterminate x with real coefficients and
Σ[x] ⊂ R[x] be the set of all SOS polynomials. Suppose f and h are polynomials then
certification of dissipativity with respect to a polynomial supply rate w can be relaxed to
the SOS feasibility program:

V (x) ∈ Σ[x]

−∇V (x)⊤f(x, u) + w(u, y) ∈ Σ[x, u].
(2.6)

If each element of f is a rational polynomial then this can also be cast as a SOS program.
Suppose each element of the dynamics are given by

ẋi = fi(x, u) =
pi(x, u)

qi(x, u)
for i = 1, . . . , n

where pi ∈ R[x, u] and qi − ϵ ∈ Σ[x, u] for ϵ > 0, then certifying dissipativity of the system
with respect to a polynomial supply rate, w, can be relaxed to:

V (x) ∈ Σ[x]

−
n∑

i=1

∇xi
V (x)pi(x, u)

∏
j ̸=i

qj(x, u) +
n∏

i=1

qi(x, u)w(u, y) ∈ Σ[x, u].
(2.7)
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2.4 Equilibrium-Independent Dissipativity (EID)
EID is a generalization of the dissipativity framework that allows us to characterize properties
of systems whose equilibrium are nonzero and may depend non-trivially on the input of the
system [13], [14]. EID guarantees that the system is dissipative with respect to any possible
equilibrium point of the system.

Definition 3. Consider a time-invariant dynamical system

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))
(2.8)

and assume there exists a nonempty set X ⋆ ⊆ Rn such that for each x⋆ ∈ X ⋆ there exists a
unique u⋆ ∈ Rm such that f(x⋆, u⋆) = 0. The equilibrium state-input map is then defined as

ku(x) : Rn → Rm such that u⋆ = ku(x
⋆).

The system (2.8) is EID with respect to a supply rate w if there exists a differentiable
nonnegative storage function V : Rn × Rn → R+ such that V (x⋆, x⋆) = 0 and

∇xV (x, x⋆)⊤f(x, u)− w(u− u⋆, y − y⋆) ≤ 0 (2.9)

for all x⋆ ∈ X ⋆, x ∈ Rn, and u ∈ Rm where u⋆ = ku(x
⋆), y = h(x, u), and y⋆ = h(x⋆, u⋆).

This definition ensures dissipativity with respect to any possible equilibrium point rather
than a particular point. This is advantageous for the analysis of interconnected systems
since the equilibrium may be hard to compute. This property is especially important for
compositional analysis, since the goal is to analyze the subsystems in isolation even though
the inputs, and consequentially the equilibrium of each subsystem depends on the intercon-
nection.

As presented in [14], certifying polynomial systems are EID can be relaxed to the SOS
program:

V (x, x⋆) ∈ Σ[x, x⋆]

r(x, u, x⋆, u⋆) ∈ R[x, u, x⋆, u⋆]
−∇xV (x, x⋆)⊤f(x, u) + w(u− u⋆, y − y⋆)

+ r(x, u, x⋆, u⋆)f(x⋆, u⋆) ∈ Σ[x, u, x⋆, u⋆].

(2.10)

Note that x⋆ and u⋆ in (2.10) are variables and not assumed to satisfy f(x⋆, u⋆) = 0. Instead,
the r term ensures that whenever f(x⋆, u⋆) = 0 then

V (x, x⋆) ∈ Σ[x, x⋆]

−∇xV (x, x⋆)⊤f(x, u) + w(u− u⋆, y − y⋆) ∈ Σ[x, u, x⋆, u⋆]

as desired.
Similarly to the polynomial case, certifying rational polynomial systems are EID can also

be formulated as an SOS feasibility program.
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2.5 Integral Quadratic Constraints (IQCs)
IQCs are a generalization of the dissipativity framework that capture frequency dependent
properties of a system. Originally, IQCs were formulated in the frequency-domain [15], but
in this work we will use a time-domain state space formulation. Under certain technical
assumptions these formulations can be shown to be equivalent [16], [17].

The time-domain formulation can also be interpreted as dissipativity with respect to a
dynamic supply rate. The dynamic supply rate is described by a stable linear system Ψ that
filters the input u and output y of a system Σ to be analyzed as shown in Figure 2.1.

Σ

Ψ

u y

z

Figure 2.1: The inputs and outputs of the system Σ are filtered through the stable linear
system Ψ with output z. The IQC is Π = Ψ∗XΨ where X is a real symmetric matrix.

Definition 4. Let (Â, B̂, Ĉ, D̂) be the realization of a stable LTI system Ψ : Rm ×Rp → Rr

with state η ∈ Rq and X ∈ Rr×r be a real symmetric matrix. Then (2.1) satisfies the
IQC defined by Π = Ψ∗XΨ if there exists a differentiable nonnegative storage function
V : Rn × Rq → R+ such that V (0, 0) = 0 and

∇xV (x, η)⊤f(x, u) +∇ηV (x, η)⊤
(
Âη + B̂

[
u
y

])
≤ z⊤Xz (2.11)

for all x ∈ Rn, η ∈ Rq, and u ∈ Rm where z = Ĉη + D̂

[
u
y

]
and y = h(x, u).

Therefore, (2.11) guarantees that the signal z := Ψ

[
u
y

]
satisfies

∫ ∞

0

z(τ)⊤Xz(τ)dτ ≥ 0

with x(0) = 0 and η(0) = 0. Furthermore, it also implies that for all u ∈ L2e the signal

z := Ψ

[
u
y

]
satisfies ∫ τ

0

z(τ)⊤Xz(τ)dτ ≥ V (x(τ), η(τ)) ≥ 0

for all τ ≥ 0 with x(0) = 0 and η(0) = 0.
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Standard dissipativity with respect to a quadratic supply rate is recovered when Ĉ = 0

(or when the state dimension is 0) and D̂ = I. Then the output of Ψ is z =

[
u
y

]
and the

supply rate is of the form

w(u, y) =

[
u
y

]⊤
X

[
u
y

]
.

Furthermore, we can generalize IQCs to also be equilibrium independent. Since we
assume that the linear system Ψ is stable then the matrix Â has all nonzero eigenvalues and
is invertible. Thus, the equilibrium of Ψ with input u⋆ satisfies

η⋆ = −Â−1B̂

[
u⋆

y⋆

]
z⋆ = Ĉη⋆ + D̂

[
u⋆

y⋆

] (2.12)

Definition 5. Let (Â, B̂, Ĉ, D̂) be the realization of a stable LTI system Ψ : Rm ×Rp → Rr

with state η ∈ Rq and X ∈ Rr×r be a real symmetric matrix. Assume there exists a
nonempty set X ⋆ ⊆ Rn such that for each x⋆ ∈ X ⋆ there exists a unique u⋆ ∈ Rm such that
f(x⋆, u⋆) = 0. Then (2.8) satisfies the equilibrium independent IQC defined by Π = Ψ∗XΨ
if there exists a differentiable nonnegative storage function V : Rn × Rq × Rn × Rq → R+

such that V (x⋆, η⋆, x⋆, η⋆) = 0 and

∇xV (x, η, x⋆, η⋆)⊤f(x, u) +∇ηV (x, η, x⋆, η⋆)⊤
(
Âη + B̂

[
u
y

])
≤ (z − z⋆)⊤X(z − z⋆)

(2.13)

for all x ∈ Rn, x⋆ ∈ X ⋆, and u ∈ Rm where u⋆ = ku(x
⋆), y = h(x, u), y⋆ = h(x⋆, u⋆),

z = Ĉη + D̂

[
u
y

]
, and (z⋆, η⋆) satisfy (2.12).

In the case of linear dynamics certifying a system satisfies an IQC or equilibrium inde-
pendent IQC can be formulated as an LMI. Similarly, certifying a system with polynomial
or rational polynomial system satisfies an IQC or equilibrium independent IQC can be for-
mulated as a SOS feasibility program.

2.6 SOS Programming
As shown in the previous sections certifying dissipativity or IQC satisfaction of a system
requires finding a storage function such that an algebraic expression holds for all values of
the independent variables. For a linear system this can be expressed as an LMI since the
inequalities involve quadratic forms in the independent variables.
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For polynomial or rational polynomial systems these algebraic expressions are higher
order polynomials and checking nonnegativity of polynomials is in general an NP-hard prob-
lem [18]. In this section we describe how we can relax this problem of certifying nonnegativity
of polynomials to a SOS programming problem. The relaxed SOS program can be formulated
as a SDP for which efficient computational solvers exist.

Let R[x] denote the set of all polynomials in variables x ∈ Rn with real coefficients.

Definition 6. A polynomial p ∈ R[x] is sum-of-squares (SOS) if there exists polynomials
g1, . . . , gN ∈ R[x] such that p =

∑N
i=1 g

2
i .

Let Σ[x] denote the set of all SOS polynomials. Clearly if p ∈ Σ[x], then p is nonnegative
for all x, but in general the converse is not true. In fact, the set Σ[x] is equal to the set of
nonnegative polynomials for only univariate polynomials, quadratic polynomials, and quartic
polynomials in two variables [19].

Finding the SOS decomposition of a polynomial or determining that none is possible can
be expressed as a SDP [20]. In order to do this the polynomial is expressed as a quadratic
form in its monomials. For every polynomial p ∈ R[x] with degree less than or equal to 2d
there is a symmetric matrix Q such that

p(x) = z(x)⊤Qz(x)

where z(x) is the vector of monomials up to order d. This is called a Gram matrix represen-
tation of p and plays a key role in the sum of squares decomposition [20], [21]. The following
theorem provides a complete characterization of SOS polynomials.

Theorem 7. A polynomial p ∈ R[x] with degree less than or equal to 2d is SOS if and only
if there exists a symmetric matrix Q ≽ 0 such that

p(x) = z(x)⊤Qz(x) (2.14)

for all x ∈ Rn, where z(x) is the vector of all monomials of degree up to d.

Note for a given polynomial p, the symmetric matrix Q satisfying (2.14) is in general
not unique. In fact, we can parametrize all possible symmetric matrices Q satisfying (2.14).
Since the elements of z(x) are not algebraically independent there exists unique symmetric
matrices (N1, . . . , Nv) that form a basis for all matrices N such that z(x)⊤Nz(x) = 0 for all
x ∈ Rn. Hence, if there exists a symmetric matrix Q0 such that p(x) = z(x)⊤Q0z(x) then

p(x) = z(x)⊤

(
Q0 +

v∑
i=1

λiNi

)
z(x)

for all λ ∈ Rv where λ parameterizes the set of all symmetric matrices Q satisfying p(x) =
z(x)⊤Qz(x). Therefore, p is SOS if and only if there exists a λ ∈ Rv such that Q0+

∑v
i=1 λiNi

is positive semidefinite.
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2d
n 4 6 8 10

2 6 10 15 21
6 28 84 210 462
10 66 286 1001 3003
14 120 680 3060 1.2e4
18 190 1330 7315 3.3e4

(a) Dimension of semidefinite constraint s

2d
n 4 6 8 10

2 6 27 75 165
6 196 2646 1.9e4 9.9e4
10 1210 3.3e4 4.6e5 4.3e6
14 4200 1.9e5 4.4e6 6.6e7
18 1.1e4 7.5e5 2.5e7 5.5e8

(b) Number of decision variables v

Table 2.1: Dimension and number of decision variables for certifying a polynomial in n vari-
ables and of degree 2d is SOS. Numbers in bold indicate problem sizes where the certification
is computationally intractable.

For a polynomial in n variables with degree 2d the dimension of the vector of monomials
z(x) ∈ Rs and the Gram matrix Q = Q⊤ ∈ Rs×s will be

s =

(
n+ d

d

)
.

The number of unique symmetric matrices (N1, . . . Nv) that form the basis for all matrices
N such that z(x)⊤Nz(x) = 0 is

v =
1

2

[(
n+ d

d

)2

+

(
n+ d

d

)]
−
(
n+ 2d

2d

)
.

This is important because when converted to an SDP s is the dimension of the semidefinite
constraint and v is the number of decision variables. In Table 2.1 we report the resulting s
and v for certifying polynomials in n variables with degree 2d are SOS. The bold numbers
indicate problems where the SOS certification becomes computationally intractable. As can
be seen this happens for moderately-sized problems and s and v increase dramatically for
only slightly larger problems.

Software packages that convert SOS programs to SDPs are available [22]–[24]. These
packages call standard SDP solvers and then convert the results back to polynomial form.

2.7 Computational Complexity of SDP Solvers
A semidefinite program (SDP) in inequality form consists of a linear objective subject to a
linear matrix inequality (LMI) constraint:

minimize
z∈Rv

cT z

subject to B +
v∑

i=1

ziAi ≽ 0.
(2.15)
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The problem data are the vector c ∈ Rv and symmetric matrices B ∈ Rs×s, Ai ∈ Rs×s.
Standard SDP solvers [25]–[27] use primal-dual interior point algorithms. These algo-

rithms have worst-case polynomial complexity [28] but can become computationally in-
tractable for large problems. The computational complexity depends on the number of
decision variables v, the dimension of the semidefinite cone s, and the structure and sparsity
of the problem data. As shown in Section 2.6 v and s can become very large for certifying
moderately-sized polynomials are SOS.

These algorithms are guaranteed to converge to an ϵ-suboptimal solution in O
(√

s log
(
1
ϵ

))
iterations and for each iteration the computational complexity is

αv2s2 + βvs3 + γv3 +O(vs2 + v2s+ s3) (2.16)

where α, β, γ > 0 are constants that depend on the specific algorithm [29]. Sparsity in the
problem allows the first two terms in (2.16) to be reduced [30], but it is still necessary to
perform a Cholesky factorization or similar operation with complexity O(s3). The third
term γv3 also remains and is the complexity of solving a linear system to compute the step
direction.

Therefore, significantly improving the scalability of solving SDPs requires reducing both
v and s. This can be accomplished by taking advantage of the structure of the problem. For
example, [31] shows that for SDPs with symmetry in the problem data both the dimension
and number of decision variables can be reduced. References [32], [33] consider SDPs that
have a chordal sparsity pattern in the problem data. This allows the LMI constraint to be
reduced to multiple smaller LMIs without adding conservatism. In this work we take advan-
tage of the interconnected structure of our problem to decompose it into many significantly
smaller subproblems and by solving them iteratively are able to find a solution to the original
problem.
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Chapter 3

Compositional Analysis of
Interconnected Systems

In this chapter we present a compositional framework for certifying the stability or perfor-
mance of interconnected systems. In this framework we express the certification problem as
a feasibility problem with local constraints that only involve individual subsystems and a
global constraint that depends on the properties of each subsystem and the interconnection
structure. The certification problems are written in this fashion because it allows us to easily
apply distributed optimization techniques in Chapter 4 that take advantage of the problem
structure.

Similar approaches to compositional analysis have been extensively studied [2]–[7]. These
approaches establish individual supply rates (and storage functions) for which each subsys-
tem is dissipative. Then, a storage function certifying dissipativity of the interconnected
system is sought as a combination of the subsystem storage functions.

The method presented here is less conservative because we take advantage of the fact
that most systems are dissipative with respect to a large number of supply rates. Therefore,
for each subsystem we search for the supply rate (and storage function) that is optimal in
terms of certifying the desired global properties.

Optimizing over the local supply rates (and storage functions) to certify stability of an in-
terconnected system was first introduced in [34], with the individual supply rates constrained
to be diagonally-scaled L2-gains. This perspective, coupled with dual decomposition, gave
rise to a distributed optimization algorithm. We generalize this approach in several ways:
certifying dissipativity, EID, or IQC satisfaction of the interconnected system; searching
over arbitrary quadratic supply rates for the local subsystems; and employing ADMM [1] to
decompose and solve the resulting problem.

We also extend this framework to certify safety of the interconnected system under dis-
turbances with bounded energy. A similar safety certification procedure was developed in
[35] for disturbances with L∞ norm bounds rather than L2 norm bounds. In [36] a direct
application of sum of squares techniques to safety verification, without the compositional
approach here, is given. An overview of the broader literature on establishing invariant sets
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is given in [37].
In this chapter we first present the compositional framework for dissipative systems.

We prove that for linear systems this approach is equivalent to searching for a separable
storage function for the entire interconnected system. Then, we extend the framework for
systems that are EID or satisfy IQCs. Finally, we show how safety certification can also be
incorporated into this framework.

3.1 Stability and Performance Certification
Consider the interconnected system in Figure 3.1 where the subsystems Σ1, . . . ,ΣN are
known. Each subsystem Σi has dynamics

ẋi(t) = fi(xi(t), ui(t)), fi(0, 0) = 0 (3.1)
yi(t) = hi(xi(t), ui(t)), hi(0, 0) = 0 (3.2)

with xi(t) ∈ Rni , ui(t) ∈ Rmi , and yi(t) ∈ Rpi . Define n := n1 + · · · + nN as the total state
dimension of the interconnected system.

M

Σ1
. . .

ΣN
y

d

u

e

Figure 3.1: Interconnected system with input d and output e.

The static interconnection M ∈ Rm×p relates[
u
e

]
=M

[
y
d

]
(3.3)

where d(t) ∈ Rpd , e(t) ∈ Rme , m = m1 + · · · +mN +me, and p = p1 + · · · + pN + pd. We
assume the interconnection is well-posed: for any d ∈ L2e and initial condition x(0) ∈ Rn

there exist unique e, u, y ∈ L2e that causally depend on d.
The global and local supply rates are assumed to be quadratic forms. In particular, the

global supply rate, which is specified by the analyst, is[
d
e

]⊤
W

[
d
e

]
(3.4)
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where W is a real symmetric matrix. The local supply rates are[
ui
yi

]⊤
Xi

[
ui
yi

]
(3.5)

where Xi are real symmetric matrices to be determined.
The dissipativity certification problem will be posed as a feasibility problem involving N

local constraints, one for each subsystem, and one golobal constraint. The local constraint
sets are defined as

Li :=

{
Xi

∣∣∣∣∣ Σi is dissipative w.r.t.
[
ui
yi

]⊤
Xi

[
ui
yi

]}
(3.6)

and the global constraint set as

G :=

{
X1, . . . , XN

∣∣∣∣∣
[
M
Ip

]⊤
P⊤
π QPπ

[
M
Ip

]
≼ 0

}
(3.7)

where Q = diag(X1, . . . , XN ,−W ) and Pπ is a permutation matrix defined by

u1
y1
...
uN
yN
d
e


= Pπ


u
e
y
d

 . (3.8)

The following elementary theorem gives conditions for certifying dissipativity of the in-
terconnected system. This theorem is a direct extension of previous results given in [7],
[38].

Theorem 8. Consider N subsystems interconnected according to (3.3), with a global supply
rate of the form (3.4). If there exist X1, . . . , XN satisfying

Xi ∈ Li for i = 1, . . . , N

(X1, . . . , XN) ∈ G
(3.9)

then the interconnected system is dissipative with respect to the global supply rate. A storage
function certifying global dissipativity is V (x1, . . . , xN) :=

∑N
i=1 Vi(xi) where each Vi is a

storage function certifying Xi ∈ Li.
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Proof. Multiplying the LMI in (3.7) on the left by
[
y
d

]⊤
and on the right by

[
y
d

]
and making

use of (3.3), we obtain
N∑
i=1

[
ui
yi

]⊤
Xi

[
ui
yi

]
−
[
d
e

]⊤
W

[
d
e

]
≤ 0. (3.10)

Since Xi ∈ Li a storage function Vi exists such that

∇Vi(xi)⊤fi(xi, ui)−
[
ui
yi

]⊤
Xi

[
ui
yi

]
≤ 0 (3.11)

for all xi ∈ Rn, ui ∈ Rm, and yi = hi(xi, ui). Adding to (3.10) the local dissipativity
inequalities (3.11) for each subsystem, we obtain

N∑
i=1

∇Vi(xi)⊤fi(xi, ui)−
[
d
e

]⊤
W

[
d
e

]
≤ 0 (3.12)

which certifies dissipativity with respect to the global supply rate.
Furthermore, if each storage function Vi is positive definite and the global supply rate

satisfies (2.3) then Theorem 8 certifies stability of the origin of the interconnected system
with the Lyapunov function

V (x1, . . . , xN) :=
N∑
i=1

Vi(xi).

The following simple example demonstrates Thereom 8 for a negative feedback intercon-
nection of two passive subsystems. By the passivity theorem [7], [39] this interconnection
will be passive, but in the example we certify this via the compositional approach.

Example 9. Consider the subsystems

Σ1 : ẋ1 = −x31 + u1, y1 = x31
Σ2 : ẋ2 = −x2 + u2, y2 = x2

interconnected by 
u1
u2
e1
e2

 =M


y1
y2
d1
d2

 =


0 1 1 0
−1 0 0 1
1 0 0 0
0 1 0 0



y1
y2
d1
d2

 .
We want to certify that the interconnection of these subsystems is passive, i.e. dissipative
with respect to the supply rate

w(d, e) =

[
d
e

]⊤
W

[
d
e

]
=

[
d
e

]⊤ [
0 I2
I2 0

] [
d
e

]
.
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The storage functions

V1(x1) =
1

2
x41 and V2(x2) = x22

certify the subsystems are output strictly passive with supply rates parameterized by

X1 =

[
0 1
1 −2

]
and X2 =

[
0 1
1 −2

]
.

The LMI in the global constraint is satisfied when we substitute in W , X1, X2, and M .
Therefore, the interconnected system is passive.

3.2 Linear Systems with Quadratic Supply Rates
Theorem 8 certifies dissipativity of the interconnected system from the dissipativity prop-
erties of the individual subsystems and the interconnection structure M . The following
theorem gives evidence that this compositional approach is not overly conservative: for lin-
ear systems the existence of a separable quadratic storage function for the interconnection
is equivalent to the existence of supply rates satisfying (3.9). Related results in [40], [41]
show that, under certain assumptions on the interconnection, passivity of an interconnected
system is equivalent to passivity of the subsystems. First, we make a mild assumption on
the interconnection.

Assumption 10. The block diagonal elements of M mapping yi → ui are zero and the rows
of M mapping [ yd ] → ui are linearly independent for each i.

The first part of Assumption 10 implies the subsystems do not have self-feedback loops.
The second part implies that no elements of the input ui for each subsystem are identical

for all
[
y
d

]
∈ Rm.

Theorem 11. Consider N linear subsystems

ẋi = Aixi +Biui (3.13a)
yi = Cixi (3.13b)

interconnected according to (3.3) where M satisfies Assumption 10. Suppose a global supply
rate of the form (3.4) is given. The following are equivalent:

(i) There exists a separable quadratic storage function of the form

V (x1, . . . , xN) =
N∑
i=1

x⊤i Pixi

certifying dissipativity of the interconnected system.
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(ii) Each subsystem is dissipative and the associated supply rate matrices X1, . . . , XN satisfy
the global constraint G. Dissipativity of each subsystem can be certified with a storage
function of the form

Vi(xi) = x⊤i Pixi

for i = 1, . . . N .

Proof. (ii) =⇒ (i) follows by specializing Theorem 8 to linear subsystems and quadratic
storage functions of the form Vi(xi) = x⊤i Pixi. Then, the dissipation inequality (3.12) implies
condition (i).

(i) =⇒ (ii): Condition (i) is equivalent to the existence of Pi ≽ 0 for i = 1, . . . , N such
that

N∑
i=1

[
xi
ui

]⊤ [
A⊤

i Pi + PiAi PiBi

B⊤
i Pi 0

][
xi
ui

]
≤
[
d
e

]⊤
W

[
d
e

]
(3.14)

for all x and d, where u and e are expressed in terms of x and d using (3.3) and (3.13b).
Defining Vi(xi) := x⊤i Pixi, the ith summand on the left-hand side of (3.14) is

V̇ (xi, ui) := ∇Vi(xi)⊤fi(xi, ui).

We will prove the Vi are storage functions that certify local dissipativity of the subsystems.
We assume without loss of generality that for each subsystem

Ci =
[
0mi×(ni−mi) Imi×mi

]
.

This allows each xi to be partitioned as xi =
[
zi
yi

]
where zi ∈ Rni−mi and yi ∈ Rmi . Elimi-

nating xi from (3.14) and rearranging, we obtain

N∑
i=1

(
z⊤i Qizi + 2z⊤i Ri

[
ui
yi

]
+

[
ui
yi

]⊤
Si

[
ui
yi

])
≤
[
d
e

]⊤
W

[
d
e

]
for all z, y, d (3.15)

and appropriately chosen Qi, Ri, and Si. Since (3.15) holds for all z, y, d, it holds in particular
when y = d = 0. We then have from (3.3) that u = e = 0, and we conclude that Qi ≼ 0.

Using a similarity transform, we may assume, again without loss of generality, that zi
can be decomposed as:

zi =

[
ξi
ẑi

]
, where z⊤i Qizi = ẑ⊤i Q̂iẑi and Q̂i ≺ 0.

The dimensions of ẑi and Q̂i correspond to the number of nonzero eigenvalues of Qi. Rewrit-
ing

z⊤i Ri

[
ui
yi

]
= ξ⊤i Yiyi + ξ⊤i Uiui + ẑ⊤i R̂i

[
ui
yi

]
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where Yi, Ui, and R̂i are appropriately defined matrices, the summands in (3.15) take the
form

V̇i(ẑi, ξi, yi, d) = ẑ⊤i Q̂iẑi + 2ξ⊤i Yiyi + 2ξ⊤i Uiui + 2ẑ⊤i R̂i

[
ui
yi

]
+

[
ui
yi

]⊤
Si

[
ui
yi

]
. (3.16)

Because (3.15) holds for all z, y, d it must also hold if we maximize over ẑi. Performing the
maximization,

V̇i(ẑ
⋆
i , ξi, yi, d) =

[
ui
yi

]⊤
(Si − R̂⊤

i Q̂
−1
i R̂i)

[
ui
yi

]
+ 2ξ⊤i Yiyi + 2ξ⊤i Uiui (3.17)

where ẑ⋆i := argmaxẑi V̇i(ẑi, ξi, yi, d). If we further define Xi := Si − R̂⊤
i Q̂

−1
i R̂i, we can

write

N∑
i=1

V̇i(ẑ
⋆
i , ξi, yi, d) =

N∑
i=1

[
ui
yi

]⊤
Xi

[
ui
yi

]
+ 2ξ⊤Ȳ y + 2ξ⊤Ūu (3.18)

where Ȳ := diag(Y1, . . . , YN) and Ū is similarly defined. Thus,

N∑
i=1

V̇i(ẑi, ξi, yi, d) ≤
N∑
i=1

V̇i(ẑ
⋆
i , ξi, yi, d) ≤

[
d
e

]⊤
W

[
d
e

]
(3.19)

for all ẑ, ξ, y, d where e, u satisfy (3.3). Note that the the right-hand side of (3.19) does not
depend on ξ, yet its lower bound (3.18) is linear in ξ. The only way this inequality can be
true for all ξ is if

2ξ⊤Ȳ y + 2ξ⊤Ūu = 0 for all ξ, y, d.

From (3.3), we have u =M11y +M12d and so

Ȳ + ŪM11 = ŪM12 = 0. (3.20)

By denoting M11
ij as the submatrix of M mapping yj → ui and M12

j as the submatrix of
M mapping d→ ui, then for each i, (3.20) simplifies to

Yi + UiM
11
ii = 0

UiM
11
ij = 0 for j ̸= i

UiM
12
j = 0 for j ∈ 1, . . . , N

Assumption 10 implies that Ui = Yi = 0. Therefore, (3.17) simplifies to

V̇i(xi, d) ≤ V̇i(ẑ
⋆
i , ξi, yi, d) =

[
ui
yi

]⊤
Xi

[
ui
yi

]
(3.21)
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and hence, the storage function Vi certifies dissipativity of the ith local subsystem with
respect to the supply rate matrix Xi. Combining (3.19) and (3.21) gives

N∑
i=1

[
ui
yi

]⊤
Xi

[
ui
yi

]
≤
[
d
e

]⊤
W

[
d
e

]
. (3.22)

It follows from (3.21)–(3.22) that each subsystem is dissipative with respect to the supply
rate parameterized by Xi and X1, . . . , XN is contained in the global constraint set (3.7).

We next extend the results of Theorem 8 by using EID or IQCs to characterize the local
and global properties.

3.3 Certification of EID Systems
In order to extend this approach to subsystems whose equilibrium is not necessarily at the
origin we use EID. Therefore, we assume that for the interconnected system there exists a
nonempty set X ⋆ ⊆ Rn such that for each x⋆ ∈ X ⋆ there is a unique d⋆ such that fi(x⋆i , u⋆i ) = 0
for i = 1, . . . , N where y⋆i = hi(x

⋆
i , u

⋆
i ) and[

u⋆

e⋆

]
=M

[
y⋆

d⋆

]
.

The global and local supply rates must be modified to depend on u⋆, y⋆, d⋆, and e⋆.
Specifically, the global supply rate becomes[

d− d⋆

e− e⋆

]⊤
W

[
d− d⋆

e− e⋆

]
(3.23)

and the local supply rates are [
ui − u⋆i
yi − y⋆i

]⊤
Xi

[
ui − u⋆i
yi − y⋆i

]
(3.24)

where W and Xi are real symmetric matrices.
For each subsystem we must determine a supply rate Xi such that the subsystem is EID.

Therefore, the local constraints sets are defined as

LEID
i :=

{
Xi

∣∣∣∣∣ Σi is EID w.r.t.
[
ui − u⋆i
yi − y⋆i

]⊤
Xi

[
ui − u⋆i
yi − y⋆i

]}
. (3.25)

The global constraint set G is unchanged.
Theorem 8 is directly applicable to this formulation by replacing the local constraint sets

in (3.6) by those in (3.25).
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Proposition 12. Consider N subsystems interconnected according to (3.3), with a global
supply rate of the form (3.23). Assume there exists a nonempty set X ⋆ ⊆ Rn such that for
each x⋆ ∈ X ⋆ there is a unique d⋆ such that fi(x⋆i , u⋆i ) = 0 for i = 1, . . . , N . Then, if there
exist X1, . . . , XN satisfying

Xi ∈ LEID
i for i = 1, . . . , N

(X1, . . . , XN) ∈ G
(3.26)

then the interconnected system is EID with respect to the global supply rate.

3.4 Certification of Systems Satisfying IQCs
We extend this approach to systems that satisfy IQCs by redefining the local constraint sets
as

LIQC
i :=

{
Xi

∣∣∣ Σi satisfies the IQC Πi = Ψ∗
iXiΨi

}
(3.27)

where Ψi is a stable linear system specified by the analyst and Xi is a symmetric matrix to
be determined. Let (Âi, B̂i, Ĉi, D̂i) be a state space realization of Ψi for each i = 1, . . . , N .

Rather than certify performance with respect to a global supply rate, we generalize this
to certifying performance with respect to a global IQC, of the form Πw := Ψ∗

wWΨw where
Ψw is a stable linear system with realization (Âw, B̂w, Ĉw, D̂w) and W is a real symmetric
matrix, both specified by the analyst.

Let
[
y
d

]
be the input to a stable linear system Ψ with the state space realization:

Â := diag(Â1, . . . , ÂN , Âw)

B̂ := diag(B̂1, . . . , B̂N , B̂w)Pπ

[
M
Ip

]
Ĉ := diag(Ĉ1, . . . , ĈN , Ĉw)

D̂ := diag(D̂1, . . . , D̂N , D̂w)Pπ

[
M
Ip

]
.

(3.28)

Then the global constraint set is defined as

GIQC :=

{
X1, . . . , XN

∣∣∣∣∣ ∃P ≽ 0 such that
[
Â⊤P + PÂ PB̂

B̂⊤P 0

]
+

[
Ĉ⊤

D̂⊤

]
Q

[
Ĉ⊤

D̂⊤

]⊤
≼ 0

}
(3.29)

where Q = diag(X1, . . . , XN ,−W ), as in (3.7).
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Proposition 13. Consider N subsystems interconnected according to (3.3). If there exist
X1, . . . , XN satisfying

Xi ∈ LIQC
i for i = 1, . . . , N

(X1, . . . , XN) ∈ GIQC
(3.30)

then the interconnected system is EID with respect to the global IQC ΠW .

Proof. Let η be the state and z the output of Ψ. Defining V (η) := η⊤Pη gives

V̇ (η, y, d) =

ηy
d

⊤ [
Â⊤P + PÂ PB̂

B̂⊤P 0

]ηy
d

 .
The LMI in (3.29) is equivalent to

V̇ (η, y, d) + z⊤Qz ≤ 0 (3.31)

for all η, y, and d with z = Ĉη + D̂ [ yd ]. We partition z such that zi is the output of Ψi and
zw is the output of Ψw. Then (3.31) becomes

V̇ (η, y, d) +
N∑
i=1

z⊤i Xizi ≤ z⊤wWzw. (3.32)

Since each subsystem satisfies an IQC Πi, we have V̇ (xi, ηi, ui, yi) ≤ z⊤i Xizi. Adding this
to (3.32) gives

V̇ (η, y, d) +
N∑
i=1

V̇i(xi, ηi, ui, yi) ≤ z⊤wWzw

certifying the interconnected system satisfies the global IQC Πw.
For computational considerations it is useful to understand the size of the LMI in (3.29).

Suppose each subsystem has ny outputs and nu inputs and the subsystem IQCs are described
by

Ψi(s) =

 ψ
1
i (s)
...

ψnb
i (s)

⊗ Iny+nu (3.33)

where ⊗ is the Kronecker product and ψi are scalar rational functions of degree q. The
state dimension of Ψ (and matrix dimension of P ) is Nnb(nu + ny)q and the dimension of
each Xi is (nb + 1)(nu + ny). For example, if N = 30, q = 1, nu = ny = 1, nb = 5 then
P = P⊤ ∈ R300×300 and each Xi = X⊤

i ∈ R10×10. This results in v = 46, 800 decision
variables and s = 330 being the dimension of the LMI in the global constraint. While this
is a large constraint it is still manageable with current SDP solvers.
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3.5 Safety Certification
In this section we augment the performance certification framework to certify safety proper-
ties of the interconnected system. Specifically, we want to certify that all state trajectories
of the interconnected system starting from the origin cannot intersect a given unsafe set U
for any disturbance d with energy bounded by β ∈ R. The disturbance d in Figure 3.1 has
bounded energy if the L2 norm satisfies

∥d∥2 =
∫ ∞

0

|d(t)|2dt ≤ β. (3.34)

To achieve this goal, we certify that the interconnected system is dissipative with respect
to the L2 reachability supply rate w(d, e) = ∥d∥2. Expressed as a quadratic form as in (3.4)
the matrix characterizing this supply rate is

W =

[
Im 0
0 0

]
. (3.35)

If Theroem 8 holds with W in (3.35) then the storage function V (x) =
∑N

i=1 Vi(xi)
satisfies V (x) ≤ ∥d∥2. To certify safety for all d with ∥d∥2 ≤ β, we need to guarantee that
the sublevel set Vβ := {x ∈ Rn : V (x) ≤ β} does not intersect the unsafe set U ; that is, its
complement Vβ contains U :

U ⊂ Vβ. (3.36)

If each storage function Vi is a polynomial and U is a semialgebric set then we can
formulate (3.36) as a SOS constraint. Let

U = {x ∈ Rn | qj(x) ≥ 0 where qj ∈ R[x] for j = 1, . . . ,M}. (3.37)

Thus Vβ and U are closed semialgebraic sets and the set containment constraint (3.36) is
satisfied if there exists ϵ > 0 and sj ∈ Σ[x] for j = 1, . . . ,M such that

N∑
i=1

Vi(xi)− β − ϵ−
M∑
j=1

sj(x)qj(x) ∈ Σ[x]. (3.38)

To see that (3.38) guarantees (3.36) note that x ∈ U implies

M∑
j=1

sj(x)qj(x) ≥ 0

by definition of U and the fact that each sj is SOS. Therefore, V (x)−β−ϵ ≥ 0 which implies
V (x) ≥ β + ϵ, hence x ∈ Vβ.
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Proposition 14. Consider N subsystems defined in (3.1) interconnected according to (3.3),
with a global supply rate parameterized by W in (3.35). Suppose there exist X1, . . . , XN

satisfying

Xi ∈ Li for i = 1, . . . , N

(X1, . . . , XN) ∈ G.

and there exists ϵ > 0 and sj ∈ Σ[x] for j = 1, . . . ,M such that
N∑
i=1

Vi(xi)− β − ϵ−
M∑
j=1

sj(x)qj(x) ∈ Σ[x].

where each Vi certifies that Xi ∈ Li. Then, any state trajectory x(t) with x(0) = 0 cannot
intersect the unsafe set U in (3.37) for any d with ∥d∥2 ≤ β for all t ≥ 0.

While Proposition 14 certifies U ⊂ Vβ it can only be applied to moderately sized systems
since it requires checking an SOS constraint involving all state variables of the interconnected
system.

In order to improve the scalability of the safety certification technique we must make
stronger assumptions about the unsafe set U . Specifically, we assume that

U = ∪N
i=1Ui (3.39)

where each

Ui = {x ∈ Rn | qji(xi) ≥ 0 where qji ∈ R[xi] for j = 1, . . . ,Mi}.

With this assumption the SOS safety constraint in (3.38) can be written as the N decoupled
constraints

Vi(xi)− β − ϵ−
Mi∑
j=1

sji(xi)qji(xi) ∈ Σ[xi] for i = 1, . . . , N (3.40)

and added to the local constraint sets. Specifically, we let the local constraint sets be

Lsafe
i :=

Xi

∣∣∣∣∣ Σi is dissipative w.r.t.
[
ui
yi

]⊤
Xi

[
ui
yi

]
with storage function Vi and

there exists ϵ > 0 and sji ∈ Σ[xi] for j = 1, . . . ,Mi satisfying (3.40)


(3.41)

Proposition 15. Consider N subsystems defined in (3.1) interconnected according to (3.3),
with a global supply rate characterized by W in (3.35). If there exist X1, . . . , XN satisfying

Xi ∈ Lsafe
i for i = 1, . . . , N

(X1, . . . , XN) ∈ G
(3.42)

then any state trajectory x(t) with x(0) = 0 cannot intersect the unsafe set U in (3.39) for
any d with ∥d∥2 ≤ β for all t ≥ 0.
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Example 16. Consider the subsystems

Σ1 : ẋ1 = −x31 + u1, y1 = x31
Σ2 : ẋ2 = −x2 + u2, y2 = x2

interconnected by [
u1
u2

]
=

[
0 1 1 0
−1 0 0 1

]
y1
y2
d1
d2


where d =

[
d1
d2

]
are disturbances satisfying ∥d∥2 ≤ β. The storage functions

V1(x1) =
1

2
x41 and V2(x2) = x22

certify the subsystems are output strictly passive with supply rates parameterized by

X1 =

[
0 1
1 −2

]
and X2 =

[
0 1
1 −2

]
.

Let
q11(x1) = x1 − 1, q12(x2) = x2 − 0.8

and the unsafe set be U = {x : q11(x1) ≥ 0} ∪ {x : q12(x2) ≥ 0}.
Using Proposition 15 we certify that the system is safe for all d with ∥d∥2 ≤ 1.25.

Figure 3.2 shows the resulting level sets of the storage function for various values of β. For
β = 1.3 it was not possible to certify safety of the system.

For the EID case minor modifications are required to certify safety and will be described
in the following section. For the case where the subsystems satisfy IQCs it is straightforward
to modify Proposition 14 or Proposition 15 to include the safety certification.

Extension to EID Systems
In order to extend this approach to EID systems we assume as in Section 3.3 that there
exists a nonempty set X ⋆ of equilibrium points.

The safety constraints (3.38) or (3.40) must be modified since the subsystem storage
functions depend on the unknown equilibrium x⋆. We also allow the unsafe set U to depend
on x⋆; for example, we may consider the system safe if all trajectories remain within a
distance of the equilibrium. This can be accomplished by letting the polynomials qj that
characterize the unsafe set U depend on x⋆.
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Figure 3.2: Level sets of V (x) = V1(x1) + V2(x2) = β. For increasing values of β ≤ 1.25 the
level sets approach but do not intersect the unsafe set.

The set containment constraint (3.36) is satisfied if there exists ϵ > 0, sj ∈ Σ[x, x⋆],
j = 1, . . . ,M , and ri ∈ R[xi, x⋆i , ui, u⋆i ], i = 1, . . . , N such that

N∑
i=1

Vi(xi, x
⋆
i )− β − ϵ−

M∑
j=1

sj(x, x
⋆)qj(x, x

⋆)

−
N∑
i=1

ri(xi, x
⋆
i , ui, u

⋆
i )fi(x

⋆
i , u

⋆
i ) ∈ Σ[x, x⋆, u, u⋆]. (3.43)

Note that x⋆ and u⋆ in (3.43) are variables and not assumed to satisfy f(x⋆, u⋆) = 0. Instead,
the rk terms ensure that whenever f(x⋆, u⋆) = 0 then

N∑
i=1

Vi(xi, x
⋆
i )− β − ϵ−

M∑
j=1

sj(x, x
⋆)qj(x, x

⋆) ∈ Σ[x, x⋆] (3.44)

as desired.
Therefore, to certify safety we can modify Proposition (14) to require that each subsystem

is EID and the safety constraint (3.38) is replaced with (3.43). Then, trajectories starting
from x(0) = x⋆ cannot intersect the unsafe set U for any d with ∥d∥2 ≤ β.
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Similarly, for the case where

U = ∪N
i=1Ui (3.45)

the safety constraint becomes the N decoupled constraints

Vi(xi, x
⋆
i )− β − ϵ−

Mi∑
j=1

sji(xi, x
⋆
i )qji(xi, x

⋆
i )

−
N∑
i=1

ri(xi, x
⋆
i , ui, u

⋆
i )fi(x

⋆
i , u

⋆
i ) ∈ Σ[xi, x

⋆
i , ui, u

⋆
i ] for i = 1, . . . , N. (3.46)

Then, we can modify Proposition 15 by requiring each subsystem to be EID with storage
function Vi that satisfies (3.46) for i = 1, . . . , N . Then, trajectories starting from x(0) = x⋆

cannot intersect the unsafe set U for any d with ∥d∥2 ≤ β.

Extension to Nonzero Initial Conditions
The previous safety certifications all guaranteed safety of trajectories starting from the equi-
librium point (e.g. x(0) = 0 or x(0) = x⋆). It is straightforward to extend these results to
the case where the initial state belongs to a semialgebraic set rather than being located at
the equilibrium. Suppose the initial state is contained in the set

I := {x ∈ Rn : wℓ(x) ≥ 0 where wℓ ∈ R[x] for ℓ = 1, . . . , L}. (3.47)

If I ⊂ Vα and the interconnected system is dissipative with respect to the L2 reachability
supply rate (3.35) then the state trajectory x(t) is contained in the sublevel set Vα+β for all
d with ∥d∥2 ≤ β, x(0) ∈ I, and t ≥ 0. Using SOS techniques we can certify I ⊂ Vα if

tℓ ∈ Σ[x] for ℓ = 1, . . . , L

−

(
N∑
i=1

Vi(xi)− α

)
−

L∑
ℓ=1

tℓ(x)wℓ(x) ∈ Σ[x]

holds. Therefore, the system is safe if the level set Vα+β does not intersect the unsafe set U .
To guarantee this the safety constraints (3.38) or (3.40) must hold with β replaced by β+α.

3.6 Chapter Summary
In this chapter a compositional approach to stability and performance certification of inter-
connected systems was presented. For the case of linear subsystems, we have shown this
approach is equivalent to searching for a separable storage function whereas for nonlinear
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systems this approach may be conservative since we are characterizing the subsystem prop-
erties with quadratic supply rates. We extended this framework to certify safety under finite
energy disturbances by requiring the interconnected system to be dissipative with respect to
the L2 reachability supply rate and adding safety constraints guaranteeing that the a level
set of the resulting storage function does not intersect an unsafe set.
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Chapter 4

Performance Certification via
Distributed Optimization

In this chapter we apply ADMM to decouple and efficiently solve the certification problems
posed in Chapter 3. ADMM is a distributed optimization technique that allows the decom-
position of an optimization problem into smaller subproblems [1] that are iteratively solved
in a coordinated fashion to find a solution to the original problem. It has been shown to
perform well for many large-scale engineering applications [1], [42], [43].

The ADMM algorithm decouples the performance certification problem into local prob-
lems for each subsystem and a global problem. In the algorithm the local problems each
receive a proposed supply rate from the global problem and solves an optimization problem
certifying dissipativity of the corresponding subsystem with a supply rate similar to the pro-
posed one. The global problem, with knowledge of the interconnection M and the updated
supply rates from the local problems, solves an optimization problem to certify dissipativity
of the interconnected system and proposes new supply rates. The algorithm iterates until
supply rates are found that certify the desired global properties.

In this chapter, we first present the general ADMM algorithm and then apply it to the
certification problem. We describe the algorithm in terms of the local and global constraints
sets, (L1, . . .LN) and G respectively, so that it can be directly applied to any of the certifi-
cation problems reported in Chapter 3.

After presenting the algorithm, we describe its convergence properties and present a
relaxed exit criterion that can reduce the number of iterations required to find a solution.
The convergence performance of the ADMM algorithm is also compared to other common
distributed optimization techniques on a large-scale linear example.
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4.1 Alternating Direction Method of Multipliers
(ADMM)

In general, ADMM is used to solve problems of the form

minimize f(x) + g(z)

subject to Ax+Bz = c
(4.1)

where x and z are vector decision variables and f and g are extended real valued functions.
The scaled ADMM algorithm is given by

xk+1 = argmin
x

f(x) +
ρ

2
∥Ax+Bzk − c+ λk∥22

zk+1 = argmin
z

g(z) +
ρ

2
∥Axk+1 +Bz − c+ λk∥22

λk+1 = Axk+1 +Bzk+1 − c+ λk

where λ is a scaled dual variable. The regularization parameter ρ is a free parameter that
typically effects the convergence rate of ADMM. However, for feasibility problems, where f
and g are indicator functions, this parameter has no effect.

The certification problem in (3.9) may be put into this form by defining the following
indicator functions:

ILi
(Xi) :=

{
0 Xi ∈ Li

∞ otherwise

IG(X1, . . . , XN) :=

{
0 (X1, . . . , XN) ∈ G
∞ otherwise

and introducing the auxiliary variable Zi for each subsystem. This allows us to rewrite (3.9)
as an optimization problem in the canonical form (4.1):

minimize
(X1:N ,Z1:N )

N∑
i=1

ILi
(Xi) + IG(Z1, . . . , ZN)

subject to Xi − Zi = 0 for i = 1, . . . , N

(4.2)

where X1:N := (X1, . . . , XN). Since the other certification problems in Chapter 3 are also
defined in terms of local and global constraints set they can also be put in this form.

The transformation of the feasibility problem (3.9) to the optimization problem (4.2) with
indicator functions is commonly used in optimization theory [1] to allow decomposition of
problems. As will be seen, in the ADMM algorithm the indicator functions in the objectives
will be transformed to constraints that the subproblems must satisfy.

Note that the first term in the objective of (4.2) is separable and the constraints are
decoupled. Therefore, the ADMM algorithm takes on the following parallelized form:
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1. X-updates: for each i = 1, . . . N , solve the local problem:

Xk+1
i = argmin

X∈Li

∥∥X − Zk
i + Λk

i

∥∥2
F

2. Z-update: if (Xk+1
1 , . . . , Xk+1

N ) ∈ G, then we have found a solution to (3.9), so termi-
nate the algorithm. Otherwise, solve the global problem:

(Zk+1
1 , . . . , Zk+1

N ) = argmin
Z1:N∈G

N∑
i=1

∥∥Xk+1
i − Zi + Λk

i

∥∥2
F

3. Λ-update: Update Λ and return to step 1.

Λk+1
i = Xk+1

i − Zk+1
i + Λk

i

Figure 4.1 depicts the parallelizable nature of the ADMM algorithm. The local SDP or
SOS problems are solved independently to determine the supply rate Xi ∈ Li that is closest,
in the Frobenius norm sense, to Λi − Zi. These supply rates are then passed to the global
problem to determine the supply rates (Z1, . . . , ZN) ∈ G that are closest to Xi + Λi. The
Λ-update then plays a role analogous to integral control to drive Xi − Zi to zero.

(Z1, . . . , ZN) ∈ G

X1 ∈ L1 XN ∈ LN
. . .

Z1X1 ZNXN

Figure 4.1: The parallelizable nature of ADMM where the local supply rates Xi are updated
individually based on the subsystem properties and the global supply rates Zi are updated
simultaneously.

4.2 Convergence of ADMM
In this section we present the convergence properties of ADMM in general and applied to
the certification problem. In order to do this we first define the epigraph of a function f as

epi(f) :=
{
(x, t) ∈ Rn+1 | f(x) ≤ t for all t ∈ R

}
.

An extended real-valued function f : Rn → R ∪ {∞} is closed, convex, and proper if and
only if the epigraph of f is closed, convex, and nonempty.
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Theorem 17. If the extended real-valued functions f and g in (4.1) are closed, proper, and
convex and the Lagrangian has a saddle point then as k → ∞ the objective f(xk) + g(zk)
converges to the optimal value, the dual variable vk converges to the dual optimal point v⋆,
and the residual Ax + Bz − c converges to zero [1]. Furthermore, if A and B are full
column rank then the decision variables xk and zk are guaranteed to converge to x⋆ and z⋆

as k → ∞ [44].

Since the local and global constraint sets in (3.9) are convex and assumed to be nonempty
the indicator functions ILi

and IG are closed, convex, and proper. If the intersection of the
local and global constraint sets is non-empty then a feasible point (X⋆, Z⋆) exists. By Slater’s
condition strong duality holds. Therefore, there exists a dual optimal point Λ⋆ such that
the Lagrangian has a saddle point [45]. Therefore, for our application ADMM is guaranteed
to find a feasible point as k → ∞. A feasible point is typically found in a finite number of
iterations, but if the interior of the feasible set is empty the algorithm may asymptotically
approach a feasible point and reach it only in the limit. This behavior is demonstrated in
the vehicle platoon example in Section 5.4.

4.3 Relaxed Exit Criterion for ADMM
Prior to the Z-update in each iteration of the ADMM algorithm we check if the local supply
rates (Xk+1

1 , . . . , Xk+1
N ) ∈ G and if so terminate the algorithm. By making a minor modifica-

tion to this exit criterion it may be possible to significantly reduce the number of iterations
required.

Note that the ADMM algorithm generates a sequence of supply ratesXq
i for q = 1, . . . , k+

1 that certify dissipativity for the i-th subsystem. Since a system is dissipative with respect
to any conic combination of valid supply rates, we can instead check if a combination of the
sequence of supply rates are in the global constraint G. Therefore, if there exists pi,q ≥ 0 for
i = 1, . . . , N and q = 1, . . . , k + 1 such that(

k+1∑
q=1

p1,qX1,q, . . . ,

k+1∑
q=1

pN,qXN,q

)
∈ G (4.3)

then the certification is achieved and the algorithm can be terminated. Alternatively, one
may only consider a subset of recent supply rates rather than the whole sequence q =
1, · · · , k + 1 to reduce the number of decision variables.

This modification does not affect the iterations of the ADMM algorithm, only the exit
criterion. Thus the algorithm is still guaranteed to converge, but the number of iterations
can be significantly reduced.

Example 18. An interconnection of 100 two-state nonlinear SISO systems was generated.
For each test the subsystem parameters and interconnection were chosen randomly but
constrained so that the system had L2 gain less then or equal to one. On 50 instances of
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this problem the standard ADMM algorithm required on average 14.7 iterations. With the
modified exit criterion this average dropped to 4.8.

4.4 Comparison to other Distributed Optimization
Techniques

While we have found that ADMM works well for the performance certification problem,
many other distributed optimization methods could also be used to solve this problem. We
briefly describe a couple common methods and compare their performance with ADMM on
a simple example.

Dual decomposition and the projected subgradient method presented in [1] was used in
[34] to certify stability of an interconnected system by searching over the L2 gain supply rates
and in [46] to verify the safety of a system using barrier certificates. Under mild conditions
on the stepsize sequence the subgradient method is guaranteed to converge to a optimal
solution in the limit [47]. Unlike ADMM, this method typically requires careful tuning of
the stepsize schedule and regularization parameter for different problems to get acceptable
performance.

Projection methods [48], [49] can also be applied to this problem. A natural way of
viewing (3.9) is that we are seeking to find a point that lies in the intersection of several
sets. Note that G is a convex set. If all the Li sets are convex as well, we may use projection
methods. The simplest such method is the alternating projection method [48]. We tested
this method as well as Dykstra’s method [49], another popular projection method. These
methods are guaranteed to converge monotonically, though the convergence rates may be
very slow.

Example 19. In order to compare the different distributed optimization algorithms, we
randomly generated N = 50 stable LTI subsystems, each with 3 states, 2 inputs, and 2
outputs. The subsystem state-space equations (2.1) then take the form

Σi :
ẋi = Aixi +Biui

yi = Cixi +Diui
for i = 1, . . . , N

Each Σi was scaled so that its L2-norm was equal to 0.95. A random interconnection matrix
M was also generated with 5% of its entries nonzero. We then scaled M so that its spectral
norm satisfies ∥M∥ = 0.95. The interconnected system has two inputs and two outputs that
were also randomly chosen. Due to the scalings mentioned above, the interconnected system
will be stable and have L2-gain less than 1. Further random scalings Ψ = diag(Ψ1, . . . ,ΨN)
and Φ = diag(Φ1, . . . ,ΦN) were used to transform the interconnection of Figure 3.1 into that
of Figure 4.2. These final scalings do not change the closed-loop map from d to e, but they
conceal the fact that the interconnection was constructed so that it satisfies the small gain
theorem [50].
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[
Ψ−1 0
0 I

]
M

[
Φ−1 0
0 I

]
Φ1G1Ψ1

. . .
ΦNGNΨN y

d

u

e

Figure 4.2: Scaling of the interconnected system of Figure 3.1 that leaves the closed-loop
map unchanged.

We restricted our search to quadratic storage functions. Therefore, the Li sets (3.6) are

Li :=

{
Xi, Pi

∣∣∣∣∣Pi ≽ 0,

[
A⊤

i Pi + PiAi PiBi

B⊤
i Pi 0

]
−
[
0 I
Ci Di

]⊤
Xi

[
0 I
Ci Di

]
≼ 0

}
The global supply rate was set as w(u, y) = |u|2 − |y|2 which certifies the L2 gain of the
system is less than or equal to 1.

Figure 4.3 shows a typical convergence plot comparing the various methods. Each method
was implemented in MATLAB using the CVX toolbox [51] and SeDuMi [26] to solve the
optimization problems. For each method, we plot the largest eigenvalue of the G-constraint
as a function of iteration count. When this value becomes negative, all eigenvalues are
negative and the G-constraint is satisfied; a feasible point has been found. The iterative
methods were initialized using Λ0 = I and X0

i = Z0
i = −I, as applicable.

We now make a few remarks regarding these result. For the particular example plotted
in Figure 4.3, the ADMM method converges in 15 iterations. Similar traces are obtained
for the projected subgradient method, though the number of iterations required to find a
feasible point turned out to be very sensitive to initial conditions, stepsize schedule, and
regularization parameter. With a stepsize of αk = (100+ k)−1, a feasible point was found in
187 iterations, but when the stepsizes are increased slightly to αk = (50 + k)−1, no feasible
point was found after 1000 iterations.

Finally, the alternating method and Dykstra’s method exhibited a monotonically de-
creasing behavior typical of projection methods; they steadily approached the boundary of
the feasible set without ever intersecting it.

Note that in Figure 4.3, the x-axis measures iterations rather than time or floating-point
operations. Iteration count is a fair metric in this case, because all methods compared have
a similar structure. Specifically, each iteration consists of parallelizable local steps involving
the Li constraints, and a global step involving the G constraint.

These results suggest that ADMM is more computationally efficient than other dis-
tributed optimization techniques for this problem. However, our primary concern is that
the algorithm is robust. In order to test this, we generated 1000 random instances of the
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Figure 4.3: Plot of the largest eigenvalue for five different iterative methods. Feasibility is
achieved when all eigenvalues are negative. ADMM converged in 15 iterations, while the
other methods took significantly longer or failed to converge after 1000 iterations.

interconnected system described earlier and used ADMM to certify performance of each sys-
tem. Figure 4.4 shows a cumulative frequency plot of the number of iterations required to
certify performance. Only one of the 1000 systems tested required more than 40 iterations
(it required 74 iterations), and 90% of systems tested required 16 iterations or fewer.

4.5 Chapter Summary
In this chapter the general ADMM algorithm was presented and applied to the certification
problems described in Chapter 3. The primary benefit of this algorithm is it allows to
decompose our problem into local and global subproblems that can be solved iteratively. We
showed that for the certification problem the ADMM algorithm is guaranteed to converge
if a solution exists and presented a relaxed exit criterion to reduce the number of iterations
of the algorithm required. Finally, we demonstrated that for a simple example it performs
significantly better than other distributed optimization techniques, like dual decomposition
or Dykstra’s Projection method.
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Figure 4.4: Cumulative plot showing the fraction of 1000 total trials that required at most a
given number of iterations to find a feasible solution using ADMM. For example, the fastest
trials found a feasible point in 4 iterations. Also, 90% of trials succeeded in 16 iterations or
fewer.
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Chapter 5

Large-Scale Examples

In this section we present multiple examples demonstrating the stability, performance, and
safety certification using the ADMM algorithm in Chapter 4. First, two examples with linear
systems are presented. The first example demonstrates the algorithms ability to reliably
certify stability for a large-scale problem with a small feasible region. The second example
demonstrates the benefits of characterizing the subsystem properties with IQCs. The next
example demonstrates the scalable nature of the algorithm for a large interconnection of
nonlinear systems and compares it to directly searching for a separable storage function.
Finally, we apply this approach to certify performance and safety of a vehicle platoon.

For all examples, the Computations were performed in MATLAB using the SOSOPT
toolbox [24] to formulate SOS programs and the CVX toolbox [51] to formulate SDP prob-
lems. The resulting SDPs were solved with MOSEK [25] or SeDuMi [26].

5.1 Skew-symmetric Interconnection Structure
For this example 50 linear subsystems of the following form were generated:

Σi :

 ẋi =

[
−ϵi 1
−1 −ϵi

]
xi +

[
0
1

]
ui

yi =
[
0 1

]
xi

The decay rate ϵi was chosen from a uniform distribution over
[
0, 0.1

]
. Each subsystem is

passive, but has large L2 gain due to the small decay rates ϵi. The interconnection matrix
M is skew-symmetric with the following form:

M =

[
0 M0

−M⊤
0 0

]
where each element of M0 was chosen randomly from a standard normal distribution. This
structure arises in communication networks and multiagent systems [52]–[54]. Skew-symmetry
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of M along with the passivity of the subsystems guarantees stability without any restriction
on the L2-gain of the subsystems or the spectral norm of M . In contrast, a large norm
(e.g. due to the size of M) and the subsystem gains prevent stability certification by the
small-gain theorem.

The formulation was tested on 100 random instances of the skew-symmetric intercon-
nected system. In all instances, the ADMM algorithm certified stability in at most 65
iterations and 90% of cases required fewer than 47 iterations (see Figure 5.1). Although we
structured this example such that certification is possible with passivity, we did not bias the
algorithm with this prior knowledge, and demonstrated its ability to converge to a narrow
feasible set in a large-scale interconnection. We emphasize, however, that the main interest
in the algorithm is when useful structural properties of the interconnection and compatible
subsystem properties are not apparent to the analyst.
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Figure 5.1: Cumulative plot showing the fraction of 100 total trials that required at most a
given number of iterations to certify stability using ADMM.

5.2 IQC Example
This example, while very simple, demonstrates the advantage of using IQCs instead of dis-
sipativity. Consider the two subsystems

Σ1(s) =
1

s+ 1
and Σ2(s) =

2

5s+ 1
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interconnected by

M =

0 −1 1
1 0 0
1 0 0

 .
The L2-gain of the interconnected (linear) system is approximately 0.862. However, using
duality certificates, one can show that by using the compositional framework with only
dissipativity properties of the subsystems it is not possible to certify the L2-gain of the
interconnected system is less than 1. By contrast, using IQCs described by

Ψ(s) =

ψ0(s)
...

ψK(s)

⊗ I2 where ψk(s) =

(
1

s+ 2

)k

with K = 3 to characterize the subsystem properties, the ADMM algorithm certifies the
L2-gain of the interconnected system is less than or equal to 0.863. The IQCs in this case
are more powerful because they capture the frequency dependent behavior of the individual
subsystems where dissipativity is only able to certify properties that hold for all frequencies.

5.3 Large-scale Rational Polynomial System
In this example we analyze the interconnection of N , 2-state rational polynomial subsystems.
Each subsystem is described by:

H :


ẋ1 = x2

ẋ2 =
−ax2 − bx31 + u

1 + cx22
y = x2

(5.1)

where a, b, c > 0 are parameters of the subsystem. The positive-definite storage function

V (x) :=
ab

2
x41 +

ac

2
x42 + ax22

with the supply rate
w(u, y) := u2 − a2y2

certify that the L2-gain of H is less than or equal to a−1.
Clearly, any interconnection of these subsystems, with an interconnection matrix whose

spectral norm is less than a, will have L2-gain less than 1. This insight allows us to construct
large-scale examples as described by the following steps:
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1. Randomly choose parameters (ai, bi, ci) from a uniform distribution on (1, 2)× (0, 1)×
(0.5, 2) for i = 1, . . . , N . These constitute the parameters of each subsystem Hi for
i = 1, . . . , N .

2. Denote γ := max
i

a−1
i .

3. Choose each entry of S ∈ Rm×p from a standard normal distribution. If desired sparsity
can be added to the interconnection by selectively zeroing out particular entries of S.

4. Compute β = inf
B
σ̄(BMB−1) where B = diag(b1, . . . , bN , Id), bi > 0 for i = 1, . . . , N

and redefine
S :=

0.99

γβ
S.

This guarantees the spectral norm of the interconnection is less than γ.

5. Randomly choose nonzero, diagonal scalings

Ψ = diag(Ψ1, . . . ,ΨN)

where Ψi ∈ Rmi×mi for i = 1, . . . , N and

Φ = diag(Φ1, . . . ,ΦN)

where Φi ∈ Rpi×pi for i = 1, . . . , N .

6. Define the final subsystems as Σi := ΦiHiΨi and the interconnection as

M :=

[
Ψ−1 0
0 Id

]
S

[
Φ−1 0
0 Id

]
.

The scalings introduced in step 5 alter the gain properties of the subsystems and intercon-
nection disguising the simple construction that guarantees the L2-gain of the interconnected
system is less than 1. Figure 5.2 below illustrates the interconnection that the algorithm
must attempt to certify.

We generated 200 random instances of this interconnected system, each with N = 100
subsystems. The ADMM algorithm was applied to certify the L2-gain of the interconnection
is less than or equal to 1. SOS programming was used to search for quartic storage functions
to certify dissipativity of the subsystems. Each storage function consists of all monomials
up to degree 4. The algorithm succeeded for all 200 tests, requiring at most 48 iterations
and less than 15 for 90% of the tests as shown in Figure 5.3.

Using this example we also were able to compare the computational performance of
our method to directly searching for a separable storage function via SOS programming.
As discussed in Section 2.6 using SOS programming on a system with 200 states is not
possible. Therefore, we tested this approach with different numbers of polynomial or rational
polynomial subsystems and compared it to the ADMM algorithm.
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]
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]
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Figure 5.2: Scaling of the interconnected system of Figure 3.1.
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Figure 5.3: Cumulative plot showing the fraction of 200 total trials that required at most a
given number of iterations to certify dissipativity using ADMM.

The subsystems and interconnection were generated as described above. For the poly-
nomial subsystems the coefficient c in (5.1) was set to 0. Since the number of iterations for
the ADMM algorithm may vary, 100 tests for each system size were performed. Figure 5.4
shows the average time for the ADMM algorithm to find a solution compared to the time to
directly search for a separable storage function.

As can be seen for moderately sized systems the ADMM algorithm outperforms con-
ventional approaches. Directly searching for a separable storage function became computa-
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Figure 5.4: Runtime of the proposed method using ADMM compared to directly finding
a separable storage function. Directly searching for a separable storage function became
computationally intractable for systems with more than 16 polynomial subsystems and more
than 6 rational subsystems.

tionally intractable for systems with more than 16 polynomial subsystems and more than
6 rational subsystems, while the ADMM algorithm has been used to certify properties for
systems with 200 rational polynomial subsystems.

5.4 Vehicle Platoon Performance Certification
In this example we analyze the L2-gain properties of a vehicle platoon [13], [55]. We consider
a platoon with N vehicles where the dynamics of the ith vehicle are described by

Σi :

{
v̇i(t) = −vi(t) + vnom

i + ui(t)

yi(t) = vi(t)
i = 1, . . . , N (5.2)

where vi is the vehicle velocity and vnom
i is the nominal velocity. In the absence of a control

input ui each vehicle tends to its nominal velocity.
Each vehicle uses the relative distance between itself and a subset of the other vehicles

to regulate its velocity. The subsets are represented by a connected, bidirectional, acyclic
graph with L links interconnecting the N vehicles. In Figure 5.5, the links are shown as
dotted lines.
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Letting pℓ be the relative displacement between the vehicles connected by link ℓ gives
ṗℓ = vi − vj where i is the leading node and j is the trailing node. We define D ∈ RN×L as

Diℓ :=


1 if i is the leading node of edge ℓ
−1 if i is the trailing node of edge ℓ
0 otherwise.

(5.3)

Thus, D⊤ maps the velocities of the vehicles to the relative velocities across each link:

ṗ = D⊤v.

x3

3

x2

2

x1

1

Figure 5.5: Vehicle platoon. Each vehicle measures the relative distance of all vehicles
connected to it by a dotted line.

We consider a set of control laws for velocity regulation that encompass those analyzed
in [13], [55]. Specifically, we let

ui = −
L∑

ℓ=1

Diℓϕℓ(pℓ) (5.4)

where ϕℓ : R → R can be any function that is increasing and surjective. The assumptions
on ϕ ensure the existence of an equilibrium point [13], but the value of the equilibrium point
is unknown. Defining Φ := diag(ϕ1, . . . , ϕL), we represent the system as the block diagram
in Figure 5.6.

Σ1 . . .
ΣN

−D D⊤

∫
Φ

vu

η

ṗp

z

Λ

Figure 5.6: Block diagram of the vehicle platoon dynamics.
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The map Λ from η to z, indicated by the dashed box in Figure 5.6, is diagonal; each ṗℓ
is integrated and the corresponding ϕℓ is applied. Thus, we define Λ := diag(Λ1, . . . ,ΛL),
where Λℓ is

Λℓ :

{
ṗℓ = ηℓ

zℓ = ϕℓ(pℓ)
ℓ = 1, . . . , L (5.5)

with input ηℓ and output zℓ. By diagonally concatenating Σ := diag(Σ1, . . . ,ΣN) with Λ we
can transform this system into Figure 5.7.

[
0 −D
D⊤ 0

]
[
Σ 0
0 Λ

]
[
v

ϕ(p)

][
u
ṗ

]

Figure 5.7: Figure 5.6 transformed into the form of Figure 3.1.

An equilibrium (v⋆, p⋆) is guaranteed to exist, but it depends on the unknown functions
ϕℓ. Therefore, we will exploit the EID properties of the subsystems to establish the desired
global property without explicit knowledge of the equilibrium.

For each Λℓ subsystem the dissipativity properties depend on the unknown ϕℓ function.
However, it is not difficult to show that Λi is EID with respect to the following supply rate[

ηℓ − η⋆ℓ
zℓ − z⋆ℓ

]⊤ [
0 1
1 0

] [
ηℓ − η⋆ℓ
zℓ − z⋆ℓ

]
(5.6)

for any function ϕℓ : R → R that is increasing and surjective. This property can be proven
by using the storage function

Vℓ(pℓ) = 2

∫ pℓ

p⋆ℓ

[ϕℓ(θ)− ϕℓ(p
⋆
ℓ)] dθ

and the property
(pℓ − p⋆ℓ)[ϕℓ(pℓ)− ϕℓ(p

⋆
ℓ)] ≥ 0

which follows because ϕℓ is increasing. Therefore, instead of searching over supply rates
for the Λℓ subsystems in the ADMM algorithm, we fix (5.6) as the supply rate so that the
algorithm does not rely on the ϕℓ functions or their associated equilibrium points.

For the simulation, we used N = 20 and each vehicle’s nominal velocity was randomly
chosen. A linear topology was used as in Figure 5.5. That is, each vehicle measures the
distance to the vehicle in front of it and the vehicle behind it. We investigated how a
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force disturbance applied to the trailing vehicle would affect the velocity of the lead vehicle.
Specifically, we augmented the interconnection matrix M (see Figure 3.1) such that the
disturbance d is applied to the last vehicle:

v̇N = −vN + vnom
N + uN + d

and the output e is the velocity of the first vehicle v1. We then certified the L2-gain from d
to e is no greater than γ using the supply rate[

d
e− e⋆

]⊤ [
1 0
0 −γ−2

] [
d

e− e⋆

]
.

A bisection search was used to find that γmin = 0.71 was the smallest value that could be
certified. Since our method searches over a restricted class of possible storage functions it
may be conservative. To bound this conservatism, we performed an ad-hoc search over linear
ϕℓ functions, seeking a worst-case L2-gain. The result was that γmin ≥ 0.49.

In this problem the interior of the feasible set is empty. Letting Xjk be the entry in the
j-th row and k-th column of X, the local subproblems have the constraints

X11
i ≥ 0 for i = 1, . . . , N

while the global problem has the constraint

D⊤diag(Z11
1 , . . . , Z

11
N )D ≤ 0.

The only solution that satisfies both of these constraints is

X11
i = Z11

i = 0 for i = 1, . . . , N

which also implies that
X12

i = X21
i = 1 for i = 1, . . . , N.

Thus, the intersection of the G and Li sets having an empty interior results in the ADMM
algorithm oscillating between X11

i > 0 for the local problems and Z11
i < 0 for the global

problem, leading to slow convergence and finding a feasible solution (i.e. X11
i = Z11

i = 0) in
the limit.

The difficulties arising from hidden equality constraints in SDP problems are well known
and there are procedures for automatically detecting these [56]. Unfortunately, it is not
clear how to apply these ideas here, because the equality constraint is only present when the
local and global constraints are considered simultaneously. We addressed this issue by setting
X11

i = 0 and X12
i = X21

i = 1, effectively removing those variables from the optimization. The
feasible region of the resulting problem has a nonempty interior, and the ADMM algorithm
converges in a few iterations.
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5.5 Vehicle Platoon Safety Example
We also illustrate the safety certification procedure on the vehicle platoon. Recall that vi for
i = 1, . . . , N is the velocity of the i-th vehicle and pℓ for ℓ = 1, . . . , L is the relative position
of the vehicles connected by the ℓ-th link.

We consider an additive disturbance (d1, . . . , dN) on the velocity dynamics (5.2) of each
vehicle and wish to find a L2 norm bound ∥d∥2 ≤ β such that the disturbance will not cause
a collision. Thus, we select the unsafe set to be

U = ∪L
ℓ=1Uℓ where Uℓ = {(v, p) : |pℓ| ≤ γ} (5.7)

with a prescribed safety margin γ > 0. If the vehicles are guaranteed to not enter the
unsafe set U then they will always stay a distance of γ away from each other preventing the
possibility of a collision.

In order to perform the safety certification we let the control law be as in (5.4) with

ϕℓ(pℓ) = (pℓ − p0)
1/3

for ℓ = 1, . . . , L where p0 > 0. Since ϕℓ is increasing and onto, a unique equilibrium point
exists.

The Λℓ subsystems are integrators with input ηℓ and output ϕℓ(pℓ) = (pℓ − p0)
1/3. The

storage functions

Vℓ(pℓ, p
⋆
ℓ) = αℓ

(
3

2
(pℓ − p0)

4/3 − 2(pℓ − p0)(p
⋆
ℓ − p0)

4/3 +
1

2
(p⋆ℓ − p0)

1/3

)
for αℓ > 0 certify equilibrium independent passivity since

∇pℓVℓ(pℓ, p
⋆
ℓ)ηℓ = ((pℓ − p0)

1/3 − (p⋆ℓ − p0)
1/3)wℓ

= αℓ

[
ηℓ − η⋆ℓ

ϕℓ(pℓ)− ϕℓ(p
⋆
ℓ)

]⊤ [
0 1
1 0

] [
ηℓ − η⋆ℓ

ϕℓ(pℓ)− ϕℓ(p
⋆
ℓ)

]
where η⋆ℓ = 0. As in the previous example we will fix the supply rates for the Λℓ subsystems,
but we will allow the ADMM algorithm to search over the positive scalings (α1, . . . , αL) to
certify safety. The algorithm searches for both storage functions and supply rates for the Σi

subsystems.
As a numerical example consider a formation of N = 3 vehicles as in Figure 5.5. The

unsafe set
U := {(v, p) : |p1| ≤ 5} ∪ {(v, p) : |p2| ≤ 5}

is the union of two sets; therefore, we include a constraint of the form (3.43) in each of the
local constraint sets for the Λi subsystems. We let v01 = 9, v02 = 10, v03 = 11, and p0 = 20.
Assuming the system is initialized at the equilibrium and a disturbance d is applied to the
third vehicle, the ADMM algorithm was able to certify safety of the vehicle platoon for all
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Figure 5.8: Level set of V for β = 52.0.

disturbances d such that ∥d∥2 ≤ 52.0. The unsafe set and the level set of the storage function
V (p) = V1(p1, p

⋆
1) + V2(p2, p

⋆
2) for β = 52.0 is shown in Figure 5.8.

Note that it is not obvious how to apply the SOS techniques to the functions ϕℓ and Rℓ

since they have fractional powers. To remedy this we replace (pℓ − p0)
1/3 and (p⋆ℓ − p0)

1/3

with the auxiliary variables yℓ and y⋆ℓ , respectively, and include the polynomial equality
constraints (yℓ)3 = pℓ− p0 and (y⋆ℓ )

3 = p⋆ℓ − p0 in the SOS program. More information about
applying SOS techniques to nonpolynomial systems can be found in [57].
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Chapter 6

Symmetry Reduction

In this chapter we exploit symmetries in the interconnection matrix M to provide a di-
mensionality reduction in the performance certification. If the subsystems possess similar
dissipativity properties then the conservatism introduced by the reduction is minimal. We
demonstrate how to incorporate this reduction into the ADMM algorithm presented in Chap-
ter 4.

Symmetries often occur naturally in interconnected systems such as ring oscillators, ve-
hicle platoons, and robot swarms. Symmetry in the interconnection matrix M , defined
by invariance under specific row and column permutations, allows the subsystems to be
partitioned into equivalence classes. If the subsystems within an equivalence class share
common dissipativity properties, the number of decision variables in the global constraint
can be reduced. In some cases a reduction in the dimension of the linear matrix inequality
(LMI) defining the global constraint is also possible. Taken together, these reductions can
significantly reduce the computational time for analysis, and allow treatment of very large
systems.

In general it may be difficult to determine all of the symmetries present in M , but specific
instances of symmetry are readily apparent in many physical systems, like vehicle platoons or
biological networks [58], where M can be interpreted as the adjacency matrix of a weighted
directed graph. In some cases systems have a symmetric structure but nonidentical weights
in the interconnection M prevent exploitation of this symmetry. We demonstrate that it
is possible to diagonally scale M to recover this symmetry and then apply the symmetry
reduction to the scaled system.

Symmetry reduction techniques have been widely applied; here we briefly summarize
the results that are most relevant. In [59] stability certification of large interconnections
with subsystems is achieved by checking the stability of a reduced, equivalent system. This
approach requires that all of the subsystems are identical and are identically interconnected,
i.e. every subsystem is connected to its neighbors in the same fashion. Symmetry reduction
techniques are used in [60] to reduce the complexity of general SDP and SOS problems.
These results have been applied in many areas including controller synthesis for symmetric
linear systems in [61] and the fastest mixing problem in reversible Markov chains with graph
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symmetries in [62]. Symmetries in the network topology have been associated in [63] with
uncontrollability of networked consensus dynamics.

The approach put forth here is unique in that it does not require the subsystems to be
identical or even have similar dynamics. The only requirement is that they share dissipativity
properties. Furthermore, no restrictions on the interconnection are required. Reference [60]
exploits symmetry in the LMI constraint and objective of the SDP; however, this may be
difficult to detect. By contrast, in our approach the graph representation of the intercon-
nection readily exposes symmetries. If the subsystems in an equivalence class share common
dissipative properties these symmetries can be imposed on the global constraint reducing
the number of decision variables.

In this chapter, we first define symmetries of interconnected systems via the notion of
automorphisms from graph theory and describe the reduction for interconnections of dissi-
pative systems. We demonstrate this on the vehicle platoon model presented in Section 5.4
and a large-scale cyclic interconnection of nonlinear subsystems. After these examples we
present an extension of the theory for subsystems that satisfy integral quadratic constraints
(IQC).

For simplicity of notation, we address the case where each subsystem is SISO (i.e.,
mi = pi =1, i=1, ..., N) although the results are generalizable to MIMO systems (see Remark
27).

6.1 Interconnection Symmetries
To characterize the symmetry properties we adapt the notion of automorphism from graph
theory [64] to our interconnected system with inputs e and outputs d. We represent the in-
terconnected system as an incidence graph (Figure 6.1) where the edges are interconnections
and the vertices VN , VD, and VE are the subsystems, disturbance inputs, and exogenous
outputs, respectively. We characterize an automorphism by matrices RN , RD, and RE that
permute the vertices of the graph while preserving its structure.

Definition 20. Consider the interconnection defined by the matrix M in (3.3). An auto-
morphism is a tuple (RN , RD, RE) where RN ∈ RN×N , RD ∈ Rpd×pd , and RE ∈ Rme×me are
permutation matrices such that the following equalities hold:

RNM11=M11RN RNM12=M12RD REM21=M21RN REM22=M22RD. (6.1)

The set of all automorphisms of the interconnection M forms a group, called the auto-
morphism group:

Aut(M) =
{
(RN , RD, RE) | (6.1) holds

}
. (6.2)

Definition 21. Given the automorphism group Aut(M), the orbit of index i ∈ VN =
{1, ..., N} is defined as:

Oi =
{
j ∈ VN

∣∣∣ RNqi = qj for some (RN , RD, RE) ∈ Aut(M)
}

(6.3)
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where qi ∈ RN×1 is the i-th unit vector.

Hence, two indices i, j are in the same orbit if there exists a permutation in Aut(M)
that permutes subsystem Σi with Σj. The orbits form an equivalence class given by the
equivalence relation ∼, where

i ∼ j if j ∈ Oi. (6.4)

Let r be the number of distinct orbits, labeled as Ô1, ..., Ôr.
The automorphisms represent symmetries in the incidence graph M(V,E) of the inter-

connection matrix M . The vertex set of M(V,E) is

V = VN ∪ VD ∪ VE (6.5)

where
VN = {1, ..., N}

corresponds to the subsystems Σi, i = 1, ..., N , and similarly,

VD = {N + 1, ..., N + pd}

corresponds to the disturbance inputs dl, l = 1, ..., pd, and

VE = {N + pd + 1, ..., N + pd +me}

corresponds to the performance outputs ek, k = 1, ...,me. The set of edges is

E = EN ∪ ED ∪ EE ∪ EO (6.6)

where EN includes the edges between Σi and Σj with weight {M11}ij; the edges ED from
VD to VN represent the effect of disturbance dl in Σi with input weight {M12}il; the edges
EE from VN to VE represent the effect of Σi in the output ek with weight {M21}ki; and the
edges EO from VD to VE represent the throughput of the disturbance dk on the output el
with weight {M22}kl.

As an illustration, consider the cyclic network with six subsystems Σ1, ...,Σ6, one distur-
bance d1, and three performance outputs e1, e2, e3, with incidence graph depicted in Figure
6.1a. Since the graph is symmetric with respect to the vertical axis, it remains unchanged
when 2 permutes with 6, 3 with 5, and 8 with 10. The automorphism group is given by
Ri = (Ri

N , R
i
D, R

i
E), for i = 1, 2:

R1 = (I6, 1, I3) and R2 =




1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 , 1,
[

0 0 1
0 1 0
1 0 0

]
.
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Figure 6.1: Graph representation of cyclic networks with six subsystems. White vertices
represent the subsystems Σi, green dashed vertices represent the disturbances dl, and orange
filled vertices represent the outputs ek.

The four distinct orbits are Ô1 = {1}, Ô2 = {2, 6}, Ô3 = {3, 5}, Ô4 = {4}.
In Figure 6.1b each subsystem has a disturbance input performance output pair, and

M12 = M21 = IN . Thus, definition (6.1) implies that RD = RE = RN , and the automor-
phisms are determined by RN alone. The graph now exhibits rotational symmetry as well
as symmetry with respect to all axes that are angled by integer multiples of 30o. Thus all
subsystems permute with each other (as well as all disturbances and outputs) and there is
only one orbit: Ô1 = {1, ..., 6}.
Remark 22. The full automorphism group of the interconnection may be hard to com-
pute [65]. However, we can still make use of subgroups corresponding to symmetries that
are easy to identify. The reduction discussed in the next section is valid for any subgroup of
Aut(M) although the reduction may not be as extensive.

6.2 Symmetry Reduction for Performance
Certification

In this section, we use the automorphism group of the interconnection matrix M to reduce
the dimensionality of the LMI in the global constraint set G in (3.7) used in Theorem 8.
We present these results for the case when the subsystems are dissipative and we certify
dissipativity of the interconnected system, but they are directly applicable if the subsystems
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are EID and we want to certify EID of the interconnected system. In Section 6.8 we generalize
these result for subsystems that satisfy IQCs.

For convenience, we restate the LMI in the global constraint set:

[
M
Ip

]⊤
P⊤
π QPπ

[
M
Ip

]
≼ 0 (6.7)

where Q = diag(X1, . . . , XN ,−W ) and Pπ is the permutation matrix defined in (3.8).

Lemma 23. If (6.7) holds for (X1, ..., XN ,W ) then it also holds for (X̃1, ..., X̃N , W̃ ), where

X̃i :=
1

|Oi|
∑
j∈Oi

Xj (6.8)

and

W̃ :=
1

k

k∑
i=1

[
Ri

D 0
0 Ri

E

]⊤
W

[
Ri

D 0
0 Ri

E

]
(6.9)

with k= |Aut(M)| and (Ri
N , R

i
D, R

i
E)∈Aut(M).

Proof. Let RL := diag(RN , RE) and RR := diag(RN , RD) be constructed from an auto-
morphism (RN , RD, RE) ∈ Aut(M). Since the matrices RN , RE, RD are orthonormal, the
following holds for M and Pπ,[

M
Ip

]
=

[
RL 0
0 RR

] [
M
Ip

]
R⊤

R and Pπ

[
RL 0
0 RR

]
= SPπ

where

S = diag(RN⊗I2, RD, RE) (6.10)

Then, the following LMI equivalence holds:[
M
Ip

]⊤
P⊤
π QPπ

[
M
Ip

]
≼ 0 ⇔

[
M
Ip

]⊤
P⊤
π S

⊤QSPπ

[
M
Ip

]
≼ 0. (6.11)

Since Q is block diagonal

S⊤QS =


X

RN (1)

. . .
X

RN (N)

0

0 −Ŵ
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with

Ŵ =

[
RD 0
0 RE

]⊤
W

[
RD 0
0 RE

]
where the subscripts RN(i) represent the subsystem to which i gets permuted. Finally, since
the equivalence in (6.11) holds for all automorphisms in Aut(M), we take the mean over all
automorphisms to obtain:[

M
Ip

]⊤
P⊤
π QPπ

[
M
Ip

]
≼ 0 ⇔

[
M
Ip

]⊤
P⊤
π

1

k

k∑
i=1

S⊤
i QSi︸ ︷︷ ︸

:=Q̃

Pπ

[
M
Ip

]
≼ 0 (6.12)

where k = |Aut(M)| and each block in Q̃ becomes

X̃i =
1

|Oi|
∑
j∈Oi

Xj and W̃ =
1

k

m∑
i=1

Ŵi

with X̃i = X̃j for i ∼ j.
This lemma implies that (6.7), when feasible, admits a solution satisfying

X̃i = X̃j if i ∼ j. (6.13)

Thus, we may search for one common variable for subsystems in the same orbit. In particular,
when M is vertex-transitive (i.e., all the vertices in VN , VD, and VE permute with each other
as in Figure 6.1b) there is only one orbit Ô1 = VN and the number of matrix decision
variables Xi reduces to one.

Note, however, that in this reduction W is replaced with W̃ in (6.9). Since W specifies
the desired performance, we ask that W be invariant under Aut(M), so that W = W̃ .

Assumption 24. The matrix W is invariant under Aut(M); that is,[
RD 0
0 RE

]
W = W

[
RD 0
0 RE

]
for all (RN , RD, RE)∈Aut(M). (6.14)

As an example, suppose we want to certify an L2-gain bound in the network of Figure
6.1a with the global supply rate

w(d, e) = ∥d1∥2 −
1

γ21
∥e1∥2 −

1

γ22
∥e2∥2 −

1

γ23
∥e3∥2.

If we seek the same gain bound for e1 and e3, γ1 = γ3, then the corresponding W is invariant
under Aut(M) because the global supply rate is unchanged under the automorphism that
permutes e1 and e3.

The combination of Lemma 23 with Assumption 24 leads to the following main result:
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Theorem 25. If (6.7) holds with (X1, ..., XN) and Assumption 24 is satisfied, then (6.7)
also holds with (X̃1, ..., X̃N) where X̃i = X̃j for i∼ j.

Theorem 25 states that the feasibility of the LMI in (6.7) is not compromised if we reduce
the search space to identical supply rates for subsystems in the same orbit. For identical
subsystems, or more generally subsystems that are all dissipative with respect to the same set
of supply rates, this does not add any conservatism. Otherwise, demanding the subsystems
are dissipative with respect to a common supply rate may introduce conservatism. However,
this conservatism is minimal if the subsystems share similar dissipativity properties such as
passivity or finite L2-gain.

In addition to this result, the contrapositive of Lemma 23 provides an infeasibility cer-
tificate:

Corollary 26. If there is no (X̃1, ..., X̃N , W̃ ) satisfying (6.7) with X̃i = X̃j for i∼ j, then
no other (X1, ..., XN ,W ) satisfying (6.7) exists.

Remark 27. For MIMO systems, the definition of automorphism in (6.1) changes to the
tuple (RU , RY , RD, RE), such that RUM11 =M11RY , where M11 ∈ RmN×pN , RU ∈ RmN×mN ,
and RY ∈ RpN×pN with mN :=

∑N
i=1mi and pN :=

∑N
i=1 pi. Instead of interpreting the

automorphism as a permutation on the subsystems, we now look for permutations of inputs
and outputs for each subsystem. Moreover, note that Xi ∈R(mi+pi)×(mi+pi) and that (6.13)
still holds, but the labeling of ui and yi must be chosen appropriately in order to obtain X̃i

as in Lemma 23.

6.3 Recovering Symmetry with Weight Balancing
In practice the unweighted incidence graph of M may possess symmetries which are lost
in the weighted graph because the edges are not compatibly weighted. As an example see
Figure 6.2a where the apparent rotational symmetry is broken unless the weights gi are
identical for each i, and the same holds for gdi and gei . In this case symmetry can be
recovered by transforming M into an interconnection M̂ with weight redistributions on the
edges of M . Indeed, our performance certificate remains valid under the transformation

M̂ :=

[
DN 0
0 DE

]-1
M

[
DN 0
0 DD

]
, (6.15)

where DN ∈ CN×N , DD ∈ Cpd×pd , and DE ∈ Cme×me are diagonal and invertible.

Lemma 28. The LMI in (6.7) is satisfied by (X1, ..., XN ,W ) with the interconnection matrix
M if and only if it is satisfied by (X̂1, ..., X̂N , Ŵ ) with the interconnection matrix M̂ , where
X̂i = |{DN}i|2Xi and

Ŵ =

[
DD 0
0 DE

]∗
W

[
DD 0
0 DE

]
. (6.16)



CHAPTER 6. SYMMETRY REDUCTION 57

An application of Lemma 28 is illustrated in Figure 6.2 where the graph in Figure 6.2a
is transformed into the vertex-transitive graph in Figure 6.2b with the weight balancing
matrices:

DN = diag
(
1,
g2g3
r2

,
g3
r

)
DD = diag

(
1

gd1
,
g2g3
gd2r

2
,
g3
gd3r

)
(6.17)

DE = diag
(
ge1 ,

g2g3ge2
r2

,
g3ge3
r

)
,

where r=(g1g2g3)
1
3 . Thus, the decision variables in (6.7) can be reduced to a single matrix

variable. When g1g2g3< 0, these matrices are complex and the weights throughout the cycle
can be balanced to r= |g1g2g3|

1
3 e−iπ

3 .

6.4 Symmetry Reduction with ADMM
In this section we demonstrate how the ADMM algorithm presented in Section 4.1 can be
modified to take into account the symmetry reduction techniques. This further improves the
scalability and computational efficiency of this approach.

In Section 4.1 we posed the performance certification problem as the optimization prob-
lem

minimize
(X1:N ,Z1:N )

N∑
i=1

ILi
(Xi) + IG(Z1, . . . , ZN)

subject to Xi − Zi = 0 for i = 1, . . . , N

(6.18)

where X1:N := (X1, . . . , XN). From Theorem 25, problem (6.18) can be reduced to

minimize
(X1:N ,Z1:N )

N∑
i=1

ILi
(Xi) + IG(Z1, . . . , ZN)

subject to Zi = Zj for i ∼ j

Xi = Zi for i = 1, . . . , N

(6.19)

where the equality constraint Zi = Zj for i ∼ j reduces the number of independent decision
variables.

Then the ADMM algorithm for (6.19) becomes:

1. X-updates: for each i, solve the local problem:

Xk+1
i = argmin

X∈Li

∥∥X − Zk
i + Λk

i

∥∥2
F
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(b) Balanced interconnection with a unique orbit O1 = VN

Figure 6.2: Balancing the weights of the original interconnection M as in (6.15), with (6.17).
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2. Z-update: solve the global problem:

(Zk+1
1 , . . . , Zk+1

N ) = argmin
Z1:N∈G

N∑
i=1

∥∥Xk+1
i − Zi + Λk

i

∥∥2
F

subject to Zi = Zj for i ∼ j

3. Λ-update: If Zk+1
i ∈ Li for i = 1, . . . , N then terminate the algorithm. Otherwise,

update Λ and return to step 1.

Λk+1
i = Xk+1

i − Zk+1
i + Λk

i

Once (Z1, . . . , ZN) satisfy the local constraints then the performance of the system is certified
and the algorithm may be terminated. However, for a large number of subsystems, it may
be undesirable to check this condition on every iteration. Instead, one could check the
convergence of the primal and dual residuals, defined as rk+1

i := Xk+1
i − Zk+1

i and sk+1
i :=

Zk+1
i − Zk

i , respectively. With these modifications the ADMM algorithm is still guaranteed
to converge as k → ∞ if a feasible point exists as described in Section 4.2.

6.5 Reducing the Global LMI to a Quotient LMI
In Section 6.2 we showed how symmetries in the interconnected system allows us to reduce
the number of decision variables in the global LMI constraint (6.7), from X1, ..., XN to
(X̃1, ..., X̃N) with X̃i = X̃j for i∼ j. In this section we exploit the symmetry further to
reduce the dimension of (6.7).

First, we define

A :=

[
M
Ip

]⊤
P⊤
π Q̃Pπ

[
M
Ip

]
(6.20)

where Q̃ = 1
k

∑k
i=1 S

⊤
i QSi as in (6.12). Then, we define TI := diag(TN , TD) and TO :=

diag(TN , TE) where

{TN}ij =

{
1 if vertex i ∈ VN is in orbit j
0 otherwise.

TD and TE are defined similarly for the vertices in VD and VE and their orbits.
For the example in Figure 6.1a, we have:

TN =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0

 TD = 1 TE =

 1 0
0 1
1 0
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The symmetry in the interconnection matrix implies that MTI = TOM where

M := (T⊤
O TO)

−1T⊤
OMTI

is the quotient interconnection matrix. Due to the symmetry of Q̃ the matrix A in (6.20) is
also symmetric and ATI = TIA where

A := (T⊤
I TI)

−1T⊤
I ATI

= (T⊤
I TI)

−1

[
M
I

]⊤
P

⊤
πQP π

[
M
I

]
with

P π := (T⊤
S TS)

−1T⊤
S PπT

Q := T⊤
S QTS

where T := diag(TO, TI) and TS := diag(TN ⊗ I2, TD, TE). Under certain conditions on the
matrix A we show that if A is negative semidefinite then A is also negative semidefinite.
This is beneficial because the dimension of the LMI A ≼ 0 is

s = pd +
N∑
i=1

pi

and can be replaced by the quotient LMI A ≼ 0 of dimension

s = rd +

rN∑
i=1

pi

where rd and rN are the number of orbits in VD and VN , respectively.
First, we define the concept of a quasi-positive matrix:

Definition 29. A matrix N is said to be quasi-positive if {N}ij ≥ 0 for i ̸= j.

Proposition 30. If A is a quasi-positive matrix then

A ≼ 0 ⇔ λmax(A) ≤ 0. (6.21)

Proof. Since A is symmetric, it is enough to show that largest eigenvalue of A is nonpositive
if and only the largest eigenvalue of A is also nonpositive. Thus, due to quasi-positiveness
of A, the proof follows from the following claim.

Lemma 31. The largest eigenvalue of A is equal to the largest eigenvalue of A.
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Proof. First, we show that all eigenvalues of A are also eigenvalues of A. Letting Av = λv
and v = TI v̄ we have

Av = ATIv = TIAv = λTIv = λv. (6.22)

Then, since A is quasi-positive, it follows from the Perron-Frobenius Theorem that λmax(A)
has an associated eigenvector that is positive, i.e., vM > 0. Since vM is positive, the vector
vM = (T⊤

I TI)
−1T⊤

I vM is nonzero and we can show it is an eigenvector of A:

AvM = (T⊤
I TI)

−1T⊤
I ATIvM = (T⊤

I TI)
−1T⊤

I ATI(T
⊤
I TI)

−1T⊤
I vM

= (T⊤
I TI)

−1A
⊤
T⊤
I vM =

(
(T⊤

I TI)
−1T⊤

I

)
λmaxvM = λmaxvM . (6.23)

The third and fourth equalities hold since T⊤
I A=T⊤

T A
⊤=A

⊤
I T

⊤
I . We conclude that

λmax(A) = λmax(A).

Therefore, if A is quasi-positive we can replace the constraint A ≼ 0 in the global con-
straint set G with A ≼ 0. The following are sufficient conditions on the subsystem supply
rates that guarantee the quasi-positiveness property of the matrix A.

Lemma 32. Let the interconnection matrix M be nonnegative, with M22 ≡ 0, and consider
quadratic supply rates parameterized by X1, . . . , XN and W of the form:

Xi =

[
Qi Si

S⊤
i Ri

]
for i = 1, ..., N and W =

[
Q0 S0

S⊤
0 R0

]
.

Then, the following conditions on Xi and W guarantee the quasi-positiveness of A in (6.20):

• For k ̸= l, {Ri}kl ≥ 0 (i.e. all nondiagonal elements of Ri are nonnegative);

• Qi, Si are nonnegative;

• For k ̸= l, {Q0}kl ≤ 0, {R0}kl ≤ 0 (all nondiagonal elements of Q0 and R0 are
nonpositive);

• S0 is nonpositive.

Additionally, if M22 ̸= 0 then R0 must be nonpositive.

6.6 Large Scale Polynomial Example
In the following example we consider the case where the dynamics of each subsystem have
the same structure, but depend on parameters which may differ. Assuming the parameter
values lie in known bounds, we certify that the subsystems are dissipative with respect to
a supply rate for all possible parameter values. This methodology could also be applied to
systems with uncertain or unknown parameters.
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Consider a system of the form

ẋ = f(x, u, δ) f(0, 0, δ) = 0

y = h(x, u, δ) h(0, 0, δ) = 0

δ ∈ ∆

(6.24)

where ∆ := {δ ∈ Rd | qi(δ) ≤ 0 for i = 1, . . . , nq} is a closed semialgebriac set and qi :
Rd → R are real polynomials. The system is robustly dissipative with respect to a supply
rate w if it is dissipative with respect to w for all parameters δ ∈ ∆. A sufficient condition
for robust dissipativity is the existence of a differentiable and nonnegative storage function
V : Rn → R+ and nonnegative functions ri : Rn+m+d → R+ such that

∇V (x)⊤f(x, u, δ)− w(u, y)−
nq∑
i=1

ri(x, u, δ)qi(δ) ≤ 0 (6.25)

for all x ∈ Rn, u ∈ Rm, δ ∈ Rd, and y = h(x, u, δ). Similarly to standard dissipativity, this
problem can also be cast as an SOS program for systems with linear or polynomial dynamics.

Suppose multiple subsystems are contained in an orbit under the action of the intercon-
nection automorphism group. Then it is possible to search simultaneously for a supply rate
and storage function certifying robust dissipativity for all the subsystems in the orbit. This
significantly reduces the complexity of the problem and is especially beneficial when many
similar subsystems are in the same orbit.

As an example consider a cyclically interconnected system of N = 100 subsystems where
each subsystem has a disturbance input and performance output as in Figure 6.1b. The N
subsystems are described by

Σi :


ẋ1(t) = x2(t)

ẋ2(t) =
−aix2(t)− bix1(t)

3 + ui(t) + di(t)

1 + cix2(t)2

yi(t) = ei(t) = x2(t)

where ai, bi, ci > 0 are parameters, di(t) is the input disturbance, and ei(t) the exogenous
output. The parameters ai, bi, and ci are chosen uniformly from the interval [1.1, 1.2] so
that the subsystems are all different.

We certify an L2-gain bound from d to e using three different methods:

1. ADMM without symmetry reduction,

2. ADMM with symmetry reduction, and

3. robust analysis with symmetry reduction.
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In the first two methods we certify dissipativity of each subsystem individually since the
parameter values are different for each subsystem. For the robust analysis we certify robust
dissipativity of all the subsystems simultaneously for all possible parameter values in the
interval [1.11.2]. For each method subsystem dissipativity or robust dissipativity is certified
via SOS programming to search for a quartic storage function.

Without symmetry reduction, the ADMM algorithm certifies that the system has L2-
gain less than 0.58. By taking advantage of the interconnection symmetry the number of
supply rate matrices reduces from 100 to 1, thus reducing the number of decision variables
in the global constraint from 300 to 3, one for each unique entry in the supply rate matrix
Xi = X⊤

i ∈ R2×2. In this case ADMM certifies the system has L2-gain less than 0.64. While
this bound is more conservative, solving the global constraint takes 25 − 30% less time,
specifically, 5.0 seconds on average compared to 7.1 seconds for each iteration of the ADMM
algorithm (for this case 12 iterations were required).

For the robust analysis, each subsystem has uncertain parameters ai, bi, and ci contained
in the interval [1.1, 1.2]. Since each subsystem has the same dynamics and uncertainty
we can find a supply rate for all the subsystems by solving one instance of the robust
dissipativity condition (6.25). Therefore, decomposing the problem and solving it iteratively
is not necessary. Solving the local and global constraints simultaneously took less than 10
seconds and certified the L2-gain of the system is less than 0.64.

In this example we demonstrated that the symmetry reduction with ADMM provides a
modest reduction in the solution time of the global constraint. The reason a more significant
reduction is not achieved is because the computational complexity of solving an SDP depends
primarily on the number of decision variables v and the dimension of the semidefinite cone s
as described in Section 2.7. For the global constraint (6.7) the number of decision variables
and size of the SDP cone are given by

v =
1

2

N∑
i=1

(pi +mi + 1)(pi +mi)

and

s = pd +
N∑
i=1

pi.

The symmetry reduction applied greatly reduces v but s is unchanged.
In Section 6.5 it is shown that under certain conditions it is possible to also reduce the

dimension of the SDP cone, s. Specifically, by exploiting the symmetry in the global LMI
(6.7) with Q̃ = 1

k

∑k
i=1 S

⊤
i QSi, where Si is as in (6.10) the LMI will have the same symmetric

structure as M . Then, if the left hand side of the LMI is quasi-positive the certification of
the LMI (6.7) can be reduced to an equivalent quotient LMI of dimension

s = rd +

rN∑
i=1

pi
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where rd and rN are the number of orbits in VD and VN , respectively. If the LMI is quasi-
positive this reduction does not add any additional conservatism. Otherwise, it is often possi-
ble to restrict the structure of the subsystem supply rates such that the LMI is quasi-positive,
but depending on the subsystems and interconnection this may introduce conservatism.

The left hand side of the LMI in (6.7) is quasi-positive for this interconnection if the local
supply rate matrices are of the form

Xi =

[
xi11 xi12
xi12 −xi22

]
(6.26)

where xi11, xi12, xi22 ≥ 0. Therefore, by constraining the local supply rates to be of this
form the dimension of the LMI in the global constraint can be reduced from 200 to 2. This
reduction combined with the ADMM algorithm allows the global problem to be solved in
less than 0.1 seconds. For the robust analysis case the local and global problems are both
independent of the number of subsystems and can be solved simultaneously in less than 0.5
seconds. Restricting the supply rates to the form in 6.26 did not add any conservatism for
this example. Both the ADMM and robust analysis methods found a L2-gain bound of 0.64.

Table 6.1 compares the size of the problem for each solution method. Specifically, N is
the number of local problems that must be solved, v is the number of decision variables in
the global constraint LMI, and s is the dimension of the LMI.

Method N v s

ADMM 100 300 200
ADMM + Sym. Reduction 100 3 200

ADMM + Quotient Reduction 100 3 2
Robust Analysis + Sym. Reduction 1 3 200

Robust Analysis + Quotient Reduction 1 3 2

Table 6.1: Size comparison for various certification methods.

6.7 Vehicle Platoon Example
In this example we apply the symmetry reduction techniques to the vehicle platoon example
presented in Section 5.4. Recall, the dynamics of each vehicle are

Σi :

{
v̇i(t) = −vi(t) + vnom

i + ui(t)

yi(t) = vi(t)
i = 1, . . . , N

where vi is the vehicle velocity, vnom
i is the nominal velocity, and ui is the control input.

The interconnection of vehicles is represented by a connected, bidirectional, acyclic graph
with L links interconnecting the N vehicles as in Figure 6.3 (top), where d1 is an additive
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Figure 6.3: Vehicle platoon with linear topology. Each vehicle measures the relative distance
of all vehicles connected to it by a link (dotted line) (top). Reduction due to the symmetry
along the middle vehicle (bottom).

disturbance on u3, and ei are the performance outputs which measure the velocity of the
respective vehicles.

The relative displacement pℓ between the vehicles connected by link ℓ is related to the
individual vehicle velocities vi by the incidence matrix D defined in (5.3) so that

ṗ(t) = D⊤v(t). (6.27)

We consider the same class of control laws as in Section 5.4:

ui(t) = −
L∑

ℓ=1

Diℓϕℓ(pℓ(t))

where ϕℓ : R → R is increasing and surjective, but otherwise unknown. This assumption
guarantees the existence of an equilibrium point (p⋆, v⋆) for the interconnected system [13].
Letting Λℓ be the link subsystems as in (5.5) with input ηℓ and output zℓ. Each Λℓ subsystem
is EID with respect to the supply rate[

ηℓ − η⋆ℓ
zℓ − z⋆ℓ

]⊤ [
0 1
1 0

] [
ηℓ − η⋆ℓ
zℓ − z⋆ℓ

]
.

as was shown in Section 5.4. In the following computations the supply rates of each Λℓ are
fixed and the supply rates of each Σi are decision variables.

The interconnected system can then be represented as in the block diagram in Figure 5.7
where Σ = diag(Σ1, . . . ,ΣN) and Λ = diag(Λ1, . . . ,ΛL).

We now exploit the symmetric topology of the vehicle platoon using the results of the
previous sections. Consider a platoon of N = 201 vehicles with symmetry as depicted
in Figure 6.3 and each vehicle’s nominal velocity randomly chosen. To numerically test our
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[
0 −D
D⊤ 0

]
[
Σ 0
0 Λ

]
[
v

ϕ(p)

][
u
ṗ

]

Figure 6.4: Vehcile Platoon example transformed into the form of Figure 3.1.

reduction algorithm we apply a disturbance d to the 51-st vehicle and investigate the L2 gain
from d to the velocities of the first and last vehicles, designated as the performance variables
e1 and e2. This configuration allows us to exploit the symmetry of the interconnection about
the center vehicle (Figure 6.3) reducing the number of unique supply rates in the global LMI
constraint from 201 to 101. Since Xi for each vehicle has three unique entries, the number
of decision variables reduces from 603 to 303.

Using the ADMM algorithm and the symmetry reduction we certify that the L2-gain
from d to e is no greater than 1. In fact, the ADMM algorithm without symmetry reduction
cannot certify a smaller gain; hence, for this example the symmetry reduction does not add
conservatism. The symmetry reduction reduces the average time required to solve the global
problem from 18.4 to 8.1 seconds1.

This further reduction described in Section 6.5 can also be applied to the vehicle platoon
example with interconnection as in Figure 6.3. For this case the supply rates Xi considered
are of the form

Xi =

[
0 xi12
xi12 −xi22

]
where xi12, xi22 ≥ 0 which guarantees the left hand side of the LMI in (6.7) is quasi-positive.
Then, in addition to the reduction in the number of decision variables, the dimension of the
global LMI can also be reduced from 402 (201 vehicles, 200 links, and 1 disturbance) to 202
(101 vehicles, 100 links, and 1 disturbance) without introducing additional conservatism.
This reduces the average time required to solve the global LMI constraint to 3.8 seconds.

Another interesting example of a symmetric topology is a two-lane interconnection where,
in addition to communicating with the vehicles in front and behind, each vehicle also com-
municates with the three adjacent vehicles in the other lane, as depicted in Figure 6.5. In
this example, there exists a symmetry along the longitudinal line dividing the two lanes.
This allows the reduction of the problem to a single lane linear platoon topology, i.e., 1 and
6 are in O1, 2 and 7 are in O2, 3 and 8 are in O3, and so on. For N = 200 vehicles the
number of unique supply rates is reduced from 200 to 100 giving a similar reduction in the
number of decision variables and the computation time as the previous example.

1Computations were performed in MATLAB on a desktop computer with a 2.8 GHz Intel i7-860 proces-
sor. The SDP was solved with SDPT3 [27].



CHAPTER 6. SYMMETRY REDUCTION 67

1 11 2 12 3 13 4 14 5

6 15 7 16 8 17 9 18 10

19 20 21 22 23
24

25

26

27

28

29

30

31

d1

d2

e1

e2

O1 O6 O2 O7 O3 O8 O4 O9 O5

O1 O6 O2 O7 O3 O8 O4 O9 O5

O10 O11 O12 O13 O14

O15

O15

O16

O16

O17

O17

O18

O18

d

d

e

e

Figure 6.5: Two-lane vehicle platoon (top), and respective symmetry reduction (bottom).

6.8 Extension to Integral Quadratic Constraints
The symmetry reduction presented in Section 6.2 can be extended to the performance cer-
tification of an interconnected system with respect to a global IQC of the form

ΠW := Ψ∗
WWΨW

where ΨW is a stable linear system with realization (ÂW , B̂W , ĈW , D̂W ), and W is a real
symmetric matrix, both specified by the user. In this case we certify that each subsystem
satisfies an IQC

Πi = Ψ∗
iXiΨi

where Ψi is a stable linear system with state space realization (Âi, B̂i, Ĉi, D̂i) and Xi is a
real symmetric matrix.

Then the performance of the interconnected system is certified if X1, . . . XN are in the
global constraint set GIQC defined in (3.29). As in Section 6.2 we would like to use the
symmetry of the interconnected system to reduce the number of decision variables in the
LMI constraint in the global constraint set GIQC . For convenience we restate the LMI:[

Â⊤P + PÂ PB̂

B̂⊤P 0

]
+

[
Ĉ⊤

D̂⊤

]
Q

[
Ĉ⊤

D̂⊤

]⊤
≼ 0 (6.28)

where Q = diag(X1, ..., XN ,−W ) and (Â, B̂, Ĉ, D̂) are defined in (3.28).
Under the following assumptions, the automorphisms of the interconnection matrix M

provide a dimensionality reduction in the number of decision variables of the global con-
straint (6.28).
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Assumption 33. The state space realizations for the stable linear system Ψi, i = 1, ..., N ,
used in the IQCs Πi = Ψ∗

iXiΨi, and given by (Âi, B̂i, Ĉi, D̂i) are identical for systems in the
same orbit, under the action of Aut(M).

Assumption 34. The state space realization for the stable linear system ΨW given by
(ÂW , B̂W , ĈW , D̂W ) is symmetric with respect to the input permutations RU = diag(RD, RE),
i.e., there exist permutation matrices RX and RY such that

ÂWRX = RXÂW , B̂WRU = RXB̂W , ĈWRX = RY ĈW , D̂WRU = RY D̂W . (6.29)

The next Corollary is the IQC counterpart of Lemma 23. To simplify the notation, we
assume that the state space realizations of each Ψi for i = 1, ..., N have the same dimension,
where Âi ∈Rq×q, B̂i ∈Rq×2, Ĉi ∈Rl×q, and D̂i ∈Rl×2. The Corollary still holds when the
dimensions are different but the matrices SX and SY need to be appropriately modified.

Corollary 35. Let the Assumptions (33) and (34) hold. If the LMI defined in (6.28) is
satisfied by (X1, ..., XN ,W ) with P ≽ 0 then it is also satisfied by (X̃1, ..., X̃N , W̃ ), with
X̃i = X̃j if i∼ j, and

P =
1

k

m∑
i=1

SiT
X PS

i
X

where Si
X = diag(Ri

N⊗Iq, Ri
X), (Ri

N , R
i
U)∈Aut(M), and Ri

X is as in (6.29).

Remark 36. The size of P depends on the dimension of the state space realization of the
IQCs and therefore can be very large. Corollary 35 shows that P and Q are also solutions
of the LMI in (6.28) that have repeated elements. The reduction on the number of variables
for the block diagonal matrix Q is the same as before. The diagonal variables of P repeat in
a similar way, i.e., {P}kk = {P}ll if elements k, l ∈ (VN , VD, VE) are in the same orbit. The
off-diagonal elements of P repeat with the following pattern: {P}ij = {P}kl if there exists
a permutation R := (RN , RX) consistent with Aut(M) such that Rei = ek and Rej = el or
such that Rei = el and Rej = ek.
Proof. [Corollary 35] First note that due to the Assumptions above, the following holds for
each automorphism in Aut(M):[

Ĉ⊤

D̂⊤

]⊤
= SY

[
Ĉ⊤

D̂⊤

]⊤ [
S⊤
X 0
0 R⊤

R

]
where SY := diag(RN⊗Il, RY ) and[

A⊤P+PA PB
B⊤P 0

]
=

[
SX 0
0 RR

] [
Â⊤P+PÂ PB̂

B̂⊤P 0

] [
S⊤
X 0
0 R⊤

R

]
where RR := diag(RN ⊗ 2, RU). Then, the proof follows from the equivalence[

Â⊤P+PÂ PB̂

B̂⊤P 0

]
+

[
Ĉ⊤

D̂⊤

]
Q

[
Ĉ⊤

D̂⊤

]⊤
≼ 0 (6.30)
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if and only if [
Â⊤P+PÂ PB̂

B̂⊤P 0

]
+

[
Ĉ⊤

D̂⊤

]
Q

[
Ĉ⊤

D̂⊤

]⊤
≼ 0 (6.31)

with Q = S⊤
Y QSY .

6.9 Chapter Summary
Symmetry reduction techniques were applied to performance certification of interconnected
dissipative systems. By reducing the number of decision variables and dimension of the
global constraint the computational performance and scalability is significantly improved.
We demonstrated the reduction, combined with distributed optimization and robust dis-
sipativity, allows the analysis of very large interconnections without introducing excessive
conservatism. Finally, we show that this approach can be extended to the case where the
subsystems satisfy IQCs.
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Chapter 7

Passivity-based Formation Control for
UAVs with a Suspended Load

In this chapter, we present a passivity-based formation control strategy for multiple un-
manned aerial vehicles (UAVs), specifically multicopters, transporting a suspended payload
as in Figure 7.1. Many potential applications for this have been proposed, including pack-
age delivery and transportation, fire extinguishing, and geo-surveying and mine detection as
in [66], [67].

Using multiple UAVs for this task is advantageous because it provides a higher load
carrying capacity as well as having better control over the position and orientation of the
suspended load. This is especially important in applications like geo-surveying where it is
necessary to maintain the suspended load at a certain orientation relative to the ground. A
multiple UAV configuration also reduces the effect of disturbances like wind on the motion
of the suspended load. This is especially important for search and rescue or rendezvous
operations as in [68] where precise position control is necessary.

Cooperative control of multiple UAVs carrying a suspended load has been studied under
many different scenarios. For example, [67], [69] assume external cameras are available to
provide accurate position measurements of the UAVs and the payload, which limits the
applicability of these approaches for large scale, outdoor environments. Alternatively, in
[68], [70]–[72] sensors onboard the UAVs are used to measure the relative positions of the
UAVs and the payload, and use only these measurements to maintain a constant formation.

We assume that the UAVs only measure their relative positions and not the position of the
suspended load. We treat each UAV and the suspended load as individual subsystems and
propose a passivity based formation control strategy similar to that in [73], [74] to stabilize
the interconnected system. For each UAV we propose an internal control law rendering the
system output strictly passive between the input, the force from the cables and formation
control law, and the output, the velocity error. Similar to the control law in the vehicle
platoon example in Section 5.4 the formation control law can be interpreted as virtual springs
between the UAVs. The connection between the UAVs and the suspended load is modeled
as a physical spring representing the cable. We extend the framework in [74] to allow for the



CHAPTER 7. PASSIVITY-BASED FORMATION CONTROL FOR UAVS WITH A
SUSPENDED LOAD 71

Figure 7.1: Multiple UAVs carrying a suspended load.

suspended load and compensate for its effect on the UAVs.
First, we model the dynamics of the UAVs, suspended load, and cables between the UAVs

and the load. Then, in Section 7.2 we propose an internal feedback control law for each UAV
and a formation control law that regulates the relative position between each UAV. We
show that with this control strategy the interconnected system has a similar structure to
the vehicle platoon example in Section 5.4. In Section 7.3 we show that the interconnected
system has a continuum of equilibria and prove stability for all equilibrium points where the
cables supporting the suspended load are in tension. Finally, we present simulation results
using the proposed control strategy for a system with 3 UAVs.

7.1 System Dynamics
We consider N UAVs that are cooperatively carrying a suspended load. The desired forma-
tion of the UAVs and the load in the x− y plane are represented by an undirected graph as
in Figure 7.2. We let ηi ∈ R3, i = 1, . . . , N and ηN+1 be the position of the UAVs and the
suspended load, respectively.

For each dotted edge ℓ = 1, . . . , T in the graph between UAVs we assign one vertex to be
the head if it is clockwise from the other vertex. Therefore, for the configuration in Figure
7.2 vertex 1 is the head and vertex 2 is the tail along edge 1. Solid edges ℓ = T + 1, . . . , E
represent the cable between the UAV and the load. We assign the UAV vertex to be the



CHAPTER 7. PASSIVITY-BASED FORMATION CONTROL FOR UAVS WITH A
SUSPENDED LOAD 72

4

1

2 3

4

5 6

1

2

3

Figure 7.2: Undirected graph of UAVs (1, 2, 3) and the suspended load 4.

head and the load vertex the tail. The incidence matrix, given by

Mil =


1 if vertex i is the head of edge ℓ
−1 if vertex i is the tail of edge ℓ
0 otherwise,

(7.1)

will be used to characterize the interconnection topology.
Along each edge ℓ = 1, . . . , E we define the relative position as rℓ(t) := ηi(t)− ηj(t) ∈ R3

where i and j correspond to the head and tail vertices, respectively, of the ℓ-th edge.
Since the input and output of the UAVs and the suspended load is in three dimensions

the matrix D := M ⊗ I3 maps the position of the UAVs to the relative positions rℓ(t) ∈ R3

along each edge ℓ = 1, . . . , E by
r = D⊤η. (7.2)

As an example for the formation described in Figure 7.1 we have

M =


1 0 −1 1 0 0
−1 1 0 0 1 0
0 −1 1 0 0 1
0 0 0 −1 −1 −1


and 

r1
r2
r3
r4
r5
r6

 = D⊤η =


η1 − η2
η2 − η3
η3 − η1
η1 − η4
η2 − η4
η3 − η4

 .

The dynamics of each UAV are described by point mass models, as in [70], [75], of the
form

miv̇i(t) = −mig + uLi (t) + τi(t) i = 1, . . . , N (7.3)
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with state vi(t) ∈ R3, control input τi(t) ∈ R3, mass mi, and acceleration due to gravity
g ∈ R3. The force applied to the UAV through the cable connected to the suspended load
is uLi (t) ∈ R3. For each UAV an internal feedback controller will be used to compensate for
this unknown force.

The dynamics of the suspended load are

mLv̇N+1(t) = −mLg + uN+1(t) (7.4)

with state vN+1(t) ∈ R3, mass mL, acceleration due to gravity g, and input uN+1(t) ∈ R3

which is the sum of the forces applied to the load by the UAVs through the cables.
The edges ℓ = 1, . . . , T between UAVs do not represent a physical connection so in

Section 7.2 a control law is proposed that acts as virtual springs oriented along the edges
between the UAVs. The edges ℓ = T + 1, . . . , E between the UAVs and the load represent a
flexible cable. The force transferred along this cable is modeled by a function hℓ : R3 → R3

which takes the form

hℓ(rℓ) = σℓ(∥rℓ∥)
1

∥rℓ∥
rℓ (7.5)

where we assume σℓ : R+ → R is strictly increasing and onto for ℓ = T + 1, . . . , E. This
function can be interpreted as a spring acting between the UAV and the suspended load.

7.2 Control Strategy
In this section, we describe an internal feedback control for each UAV that renders it EID
and compensates for the vertical force applied to it by the suspended load. Then, a formation
control strategy is presented that regulates the relative position of the UAVs in the x, y, and
z coordinates independently.

Internal Feedback Control
We propose a passivity based design where the internal feedback for each UAV is

τi(t) = mig + vd − vi(t)− δi(t) + ufi (t) (7.6)

where mig compensates for the effect of gravity on the UAV, vd is the desired velocity of the
formation, and ufi is the formation control force which will regulate the relative positions of
the UAVs as described in Section 7.2. The component δi(t) is updated by

δ̇i(t) = vi(t)− vd δi(0) = δ̂i (7.7)

where δ̂i is an estimate of the bias force applied to each UAV. The purpose of δ is to
compensate for the vertical force applied to each UAV by the suspended load as well as
compensate for other unmodeled bias forces like wind.
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With this control strategy the UAV dynamics are

miv̇i(t) = −vi(t) + vd − δi(t) + ui(t)

δ̇i(t) = vi(t)− vd
(7.8)

where ui = ufi + uLi is the sum of the formation control force ufi and the force from the
suspended load uLi . In Section 7.3 we show that this choice of τ guarantees that the system
(7.8) is equilibrium independent output strictly passive from the input ui to the output vi.

Formation Control
The interconnected system can be represented as the block diagram in Figure 7.3. The Σi

subsystems mapping ui to vi are the UAV (i = 1, . . . , N) and suspended load (i = N + 1)
subsystems and the Λℓ subsystems mapping wℓ to yℓ = h(rℓ) for ℓ = 1, . . . , E are the edge
subsystems.

Σ1 . . .
ΣN+1

−D D⊤

∫
h

vu

w

ṙr

y

Λ1,...,E

Figure 7.3: Block diagram of the vehicle platoon dynamics.

As depicted in Figure 7.3 we express the edge subsystems as

ṙℓ = wℓ

yℓ = hℓ(rℓ)
(7.9)

where w , D⊤v is the input to the edge subsystems and y is the output. For the edges
ℓ = 1, . . . , T the functions hℓ characterize the formation control strategy, while for the edges
ℓ = T + 1, . . . , E they model the cable connecting the UAVs and the suspended load.

The formation control strategy, which requires measurement of the relative positions of
the UAVs, is described by the functions hℓ : R3 → R3 of the form

hℓ(rℓ) =

σx
ℓ (r

x
ℓ )

σy
ℓ (r

y
ℓ )

σz
ℓ (r

z
ℓ )

 (7.10)
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for each edge ℓ = 1, . . . , T between UAVs. Similarly to (7.5) we assume that σx
ℓ , σ

y
ℓ , σ

z
ℓ :

R → R are strictly increasing and onto for ℓ = 1, . . . , T . This control law can be inter-
preted as three virtual springs for each edge connecting UAVs that act independently in
each coordinate.

The input to the UAVs is then

u = −D

 h1(r1)
...

hE(rE)

 (7.11)

where hℓ are given by (7.10) for ℓ = 1, . . . , T and by (7.5) for ℓ = T + 1, . . . , E. Therefore,
the input applied to the i-th subsystem is

ui = −
E∑
ℓ=1

Dilhℓ(rℓ) (7.12)

which depends only on locally available measurements because Dil ̸= 0 only when vertex i
is the head or tail of edge ℓ.

7.3 Stability Analysis
We analyze the stability properties of the system and proposed control laws using a composi-
tional approach. Specifically, for each subsystem (i.e. UAV, load, or edge) we find a storage
function certifying that it is EID. From these storage functions we then obtain a Lyapunov
function for the interconnected system.

For each UAV i = 1, . . . N , described by (7.8), the storage function

Si(vi, v̄i, δi, δ̄i) =
mi

2
∥vi − v̄i∥2 +

1

2
∥δi − δ̄i∥2 (7.13)

certifies equilibrium independent output strict passivity since

Ṡi(vi, v̄i, δi, δ̄i) = (vi − v̄i)
⊤(−vi + vd − δi + ui) + (δi − δ̄i)

⊤(vi − vd)

= −∥vi − v̄i∥2 + (vi − v̄i)
⊤(ui − δi) + (vi − v̄i)

⊤(δi − ūi)

= −∥vi − v̄i∥2 + (vi − v̄i)
⊤(ui − ūi)

where we have used v̄i = vd and ūi = δ̄i in the second equality.
For the suspended load, described by (7.4), the storage function

SL(vN+1, v̄N+1) =
mL

2
∥vN+1 − v̄N+1∥2 (7.14)
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can be used to show that it is equilibrium independent passive since

ṠL(vN+1, v̄N+1) = (vN+1 − v̄N+1)
⊤(−mLg + uN+1)

= (vN+1 − v̄N+1)
⊤(uN+1 − ūN+1)

where ūN+1 = mLg.
For each edge ℓ = 1, . . . , T , described by (7.9) with the control strategy in (7.10), the

storage function is

Rℓ(rℓ, r̄ℓ) =

∫ rℓ

r̄ℓ

(hℓ(ζ)− hℓ(r̄ℓ))dζ (7.15)

=
∑

i∈{x,y,z}

∫ riℓ

r̄iℓ

(σi
ℓ(ζ

i)− σi
ℓ(r̄

i
ℓ))dζ

i

where the second equality holds since the curl of hℓ in (7.10) is zero implying path indepen-
dence of the integral. The storage function Rℓ is zero for rℓ = r̄ℓ and strictly positive for all
rℓ ̸= r̄ℓ since σx

ℓ , σy
ℓ , and σz

ℓ are strictly increasing and onto for ℓ = 1, . . . , T . This storage
function certifies each subsystem is equilibrium independent passive since

Ṙℓ(rℓ, r̄ℓ) =

σx
ℓ (r

x
ℓ )− σx

ℓ (r̄
x
ℓ )

σy
ℓ (r

y
ℓ )− σy

ℓ (r̄
y
ℓ )

σx
ℓ (r

z
ℓ )− σz

ℓ (r̄
z
ℓ )

⊤

wℓ

= (hℓ(rℓ)− hℓ(r̄ℓ))
⊤(wℓ − w̄ℓ)

where w̄ℓ = 0.
For each edge ℓ = T + 1, . . . , E, described by (7.9) and (7.5), the storage function is

Rℓ(rℓ, r̄ℓ) =

∫ ∥rℓ∥

∥r̄ℓ∥
σℓ(ζ)dζ − σℓ(∥r̄∥)

r̄⊤ℓ (rℓ − r̄ℓ)

∥r̄ℓ∥
. (7.16)

Clearly, Rℓ(r̄ℓ, r̄ℓ) = 0 and by calculating the Hessian of Rℓ we can show that it is positive
definite in a neighborhood of r̄ℓ.

The gradient of the storage function is

∇rℓRℓ(rℓ, r̄ℓ) = σℓ(∥rℓ∥)
rℓ
∥rℓ∥

− σℓ(∥r̄ℓ∥)
r̄ℓ
∥r̄ℓ∥

= hℓ(rℓ)− hℓ(r̄ℓ)

and the Hessian is

HrℓRℓ(rℓ, r̄ℓ) = ∇rℓ

(
σℓ(∥rℓ∥)

r⊤ℓ
∥rℓ∥

)
=
σℓ(∥rℓ∥)
∥rℓ∥

I3 +∇rℓ

(
σℓ(∥rℓ∥)
∥rℓ∥

)
r⊤ℓ

=
σℓ(∥rℓ∥)
∥rℓ∥

I3 +

(
σ′
ℓ(∥rℓ∥)−

σℓ(∥rℓ∥)
∥rℓ∥

)
1

r⊤ℓ rℓ
rℓr

⊤
ℓ
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where In ∈ Rn×n is the identity matrix. Note that the Hessian is the sum of a scaled identity
matrix and a rank one matrix. Therefore, the eigenvalues of the Hessian are

σℓ(∥rℓ∥)
∥rℓ∥

with multiplicity 2 and

σℓ(∥rℓ∥)
∥rℓ∥

+

(
σ′
ℓ(∥rℓ∥)−

σℓ(∥rℓ∥)
∥rℓ∥

)
= σ′

ℓ(∥rℓ∥)

with multiplicity 1. Thus, if

σℓ(∥r̄ℓ∥) > 0 and σ′
ℓ(∥r̄ℓ∥) > 0 (7.17)

then the Hessian is positive definite at r̄ℓ which implies that Rℓ(rℓ, r̄ℓ) > 0 for all rℓ ̸= r̄ℓ
in a neighborhood of r̄ℓ. The first condition, σℓ(∥r̄ℓ∥) > 0, holds whenever the spring is in
tension and the second condition, σ′

ℓ(∥r̄ℓ∥) > 0, always holds since σℓ is increasing.
The Lie derivative of this storage function is

Ṙℓ(rℓ, r̄ℓ) = (hℓ(rℓ)− hℓ(r̄ℓ))
⊤(wℓ − w̄ℓ)

where w̄ℓ = 0. Therefore, this storage function certifies the edge subsystems are equilibrium
independent passive in a neighborhood of r̄ℓ for any r̄ℓ satisfying σℓ(∥r̄ℓ∥) > 0.

In order to characterize the equilibrium points of the system we must consider config-
urations with specific numbers of UAVs. For example with N = 2, the set of equilibria of
the interconnected system in Figure 7.3 with the UAV, edge, and load subsystems described
by (7.8), (7.9), and (7.4) respectively, is given by

E =

(v̄, δ̄, r̄)

∣∣∣∣∣∣∣∣
v̄i = vd for i = 1, . . . , 3

mLg = h2(r̄2) + h3(r̄3)

δ̄ =

[
−h1(r̄2 − r̄3)− h2(r̄2)
h1(r̄2 − r̄3)− h3(r̄3)

]
 .

where the geometric relation r̄1 = r̄2 − r̄3 is used in the last equation. Since the func-
tions h1, . . . , h3 are increasing and onto in each coordinate there exists a unique δ̄ for all
values of r̄2 and r̄3. Therefore, there is an equilibrium point for any r2 and r3 satisfying
mLg = h2(r2) + h3(r3). For configurations with N > 2 UAVs the set of equilibria E is of a
similar form and is a continuum of points.

Theorem 37. Any equilibrium point (v̄, δ̄, r̄) ∈ E of the interconnected system in Figure 7.3
that satisfies σℓ(∥r̄ℓ∥) > 0 for ℓ = T + 1, . . . , E is stable.
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Proof. By combining the subsystem storage functions (7.13)-(7.16) we get the candidate
Lyapunov function

V (v, δ, r) =
N∑
i=1

Si(vi, v̄i, δi, δ̄i) + SL(vN+1, v̄N+1) +
E∑
ℓ=1

Rℓ(rℓ, r̄ℓ). (7.18)

for any equilibrium point (v̄, δ̄, r̄) ∈ E . By the definitions of the subsystem storage functions
V (v̄, δ̄, r̄) = 0 and V is positive definite for all v, δ, and rℓ for ℓ = 1, . . . , T . Furthermore,
since σℓ(∥r̄ℓ∥) > 0 for ℓ = T + 1, . . . , E then there will exist an open set R containing
(r̄T+1, . . . , r̄E) such that

V (v̄, δ̄, r̄) = 0 and V (v̄, δ̄, r) > 0

for any {(rT+1, . . . , rE) ∈ R | rℓ ̸= r̄ℓ for ℓ = T + 1, . . . , E}.
The Lie derivative of V is

V̇ (v, δ, r) =
N∑
i=1

(
−∥vi − v̄i∥2 + (vi − v̄i)

⊤(ui − ūi)
)

+ (vN+1 − v̄N+1)
⊤(uN+1 − ūN+1) +

E∑
ℓ=1

(hℓ(rℓ)− hℓ(r̄ℓ))
⊤(wℓ − w̄ℓ)

= −
N∑
i=1

∥vi − v̄i∥2 + (v − v̄)⊤(u− ū) + (h(r)− h(r̄))⊤(w − w̄)

= −
N∑
i=1

∥vi − v̄i∥2 − (v − v̄)⊤D(h(r)− h(r̄)) + (v − v̄)⊤D(h(r)− h(r̄))

= −
N∑
i=1

∥vi − v̄i∥2 ≤ 0

where the third inequality follows from u = −Dh(r) and w = D⊤v. Hence, any equilibrium
point (v̄, δ̄, r̄) satisfying σℓ(∥r̄ℓ∥) > 0 for ℓ = T + 1, . . . , E is stable.

Remark 38. The assumption that σℓ(∥r̄ℓ∥) > 0 for ℓ = T +1, . . . , E is not restrictive because
it is only true when the cables between the UAVs and the load are in tension. This condition
is expected in normal operation and desired so that there is no slack in the cables.

7.4 Example
As an example, consider the configuration in Figure 7.2 with N = 3 UAVs carrying the
suspended load. Let each UAV have a mass m = 2 kg, and the load have mass mL = 3 kg.
In addition to the reaction force from the load, the UAVs are also affected by a constant
wind in the x-direction with a magnitude of 4 m/s.
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For N = 3, a fully connected graph between all UAVs consists of three links and the
resulting control incidence matrix Mc is given by

Mc =

 1 0 −1
−1 1 0
0 −1 1

 (7.19)

Suppose we want the three UAVs to form a triangle with each side having length ∆ ∈ R.
We let ηdi ∈ R3 for i = 1, . . . , N represent the desired positions of the UAVs and assume that

ηd1 =

00
0

 .
Then a set of possible desired positions of the UAVs are described by

ηd2 =

∆0
0

 and ηd3 =

 ∆/2√
∆2 −∆2/22

0

 .
The desired relative positions rdℓ ∈ R3 are then given byrd1rd2

rd3

 = (Mc ⊗ I3)
⊤

ηd1ηd2
ηd3

 . (7.20)

We then design hℓ as described in Section 7.2. Specifically, we choose the formation
control feedback function hℓ for ℓ = 1, . . . , T to be

hℓ(rℓ) = k(rℓ − rdℓ ) (7.21)

with k = 8. Since k is positive hℓ is strictly increasing and onto.
Note that without the suspended load the relative positions rℓ of the UAVs would converge

to the desired relative positions rdℓ . However, the force from the suspended load will pull the
UAVs slightly closer together, so the equilibrium r̄ℓ for the links between the UAVs will be
slightly different from rdℓ .

The force between the load and the UAVs are modeled by Hooke’s law as

σℓ(||rℓ||) = γ(||rℓ|| − Lℓ) (7.22)

for ℓ = T +1, . . . , E, where Lℓ = 2 is the nominal length of the wire at link ℓ. The wires are
modeled as relatively stiff springs with γ = 100.

We let the initial positions of the UAVs be

η01 =

00
0

 , η02 =

30
0

 , η03 =

01
0

 ,
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the desired formation be given by (7.20) with ∆ = 2, and the desired velocity be

vd =

00
0

 .
The results of the simulation can be seen in Figures 7.4-7.7. The relative movements of
the three UAVs can be seen in Figure 7.4, where the star represents the initial position,
and the UAV drawing is the final position. As can be seen, they approach the desired
relative formation, and the velocity error |vi(t)−vd(t)| converges to zero in Figure 7.5. From
Figure 7.6 we see that the distance between the UAVs converge to a constant value, but as
expected, it is slightly less than ∆.

Figure 7.7 shows estimates of the mass of the suspended load and wind bias, which
converge to the true values. The estimated mass of the suspended load is calculated by
summing the z-components of δi, while the estimated wind bias is the average of the xy-
components.
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Figure 7.4: Position of the three UAVs and the suspended load.
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Figure 7.5: The velocity error relative to the desired velocity vd for each UAV.
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Figure 7.6: Distance between each UAV.

7.5 Chapter Summary
In this chapter, passivity-based control design was applied to a system of multiple UAVs
carrying a suspended load. The proposed control strategy regulates the relative position
between the UAVs and compensates for the vertical force applied by the suspended load.
We prove that the equilibrium points of the system when the cables are in tension are stable
and provide simulation results demonstrating the performance of the control strategy.
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Chapter 8

Conclusion

In this dissertation a compositional approach to stability, performance, and safety certifica-
tion of interconnected systems was presented. This approach is necessary because modern
computational tools to analyze nonlinear systems are not scalable to large-scale systems.
The problem is formulated as local constraints for each subsystem and a global constraint
that only involves the subsystem properties and the interconnection structure.

Using ADMM we are able to decompose this problem into subproblems for each con-
straint. The local subproblems use the notions of dissipativity, EID, or IQCs to characterize
the input-output properties of the corresponding subsystem. The global problem depends
on the properties certified by the local problems and the interconnection structure and at-
tempts to certify global properties of the interconnected system. By iteratively solving these
problems as described in Section 4.1 convergence to a feasible solution is guaranteed.

We demonstrated that this approach is reliable and scalable; allowing the analysis of very
large nonlinear interconnected systems that are beyond the reach of conventional analysis
techniques. It is unique from conventional approaches in that it searches over the proper-
ties of the individual subsystems in a coordinated fashion to find properties that are most
propitious for certifying the desired properties of the interconnected system.

Furthermore, it was shown that by taking advantage of symmetries in large-scale inter-
connected systems that the performance and scalability of these approaches can be further
improved. Specifically, we are able to reduce the number of decision variables and, in some
cases, the dimension of the LMI constraint in the global problem. These reductions pro-
vide significant reductions in the computational time required to certify properties of these
systems and allow the analysis of even larger interconnected systems.
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